Theoretical Study on Reaction Mechanism of the Methylidyne Radical with Nitrogen Dioxide

Yu-guo Tao,* Yi-hong Ding, Ze-sheng Li, Xu-ri Huang, and Chia-Chung Sun
State Key Laboratory of Theoretical and Computational Chemistry, Institute of Theoretical Chemistry, Jilin University, Changchun 130023, People's Republic of China

Received: October 10, 2000; In Final Form: January 9, 2001

Abstract

The complex singlet potential energy surface of the CHNO_{2} system is investigated at the B3LYP and CCSD(T) (single-point) levels in order to explore the possible reaction mechanism of CH radical with NO_{2}. Twentyfive minimum isomers and 50 transition states are located. Possible energetically allowed reaction pathways leading to various low-lying dissociation products are obtained. Starting from the very energy rich reactant $\mathbf{R C H}+\mathrm{NO}_{2}$, the side-attack adduct $\mathrm{HCNO}_{2}(\mathbf{1})$ is first formed followed by oxygen-shift almost barrierlessly to give cis-OC(H)NO (2) and then to trans-OC(H)NO (2'). Subsequently, the most favorable channel is direct dissociation of $\mathbf{2}$ and $\mathbf{2}^{\prime}$ to product $\mathbf{P}_{\mathbf{1}} \mathrm{HCO}+\mathrm{NO}$. The other two much less favorable channels are direct dissociation of $\mathbf{2}^{\prime}$ to product $\mathbf{P}_{\mathbf{2}} \mathrm{HNO}+\mathrm{CO}$ or isomerization of $\mathbf{2}^{\prime}$ to a complex HON $\cdots \mathrm{CO}(\mathbf{2 1})$ that easily dissociates to product $\mathbf{P}_{3} \mathrm{HON}+\mathrm{CO}$. The large exothermicity released in these processes further drives the three products $\mathbf{P}_{1}, \mathbf{P}_{2}$, and \mathbf{P}_{3} to take secondary dissociation to the final product $\mathbf{P}_{\mathbf{1 2}} \mathrm{H}+\mathrm{CO}+\mathrm{NO}$. The pathways leading to other dissociation products such as $\mathrm{NH}+\mathrm{CO}_{2}, \mathrm{OH}+\mathrm{NCO}$ and $\mathrm{HNCO}+\mathrm{O}$, however, are even much less competitive either due to thermodynamical or kinetic factors. A notable finding is that product $\mathbf{P}_{3} \mathrm{HON}+\mathrm{CO}$, which was completely ignored in previous experiments, should be considered in evaluation of the final product yields. The present calculations can excellently explain the experimental result of a very recent diode laser study of the title reaction.

1. Introduction

The methylidyne radical, CH , is believed to play an important role in the prompt-NO formation mechanism and in the NOreburning process. ${ }^{1}$ Nitrogen oxides, NO_{x}, are among the major atmospheric pollutants released by combustion process. One way to minimize their harmful effects is to chemically reduce them before their release in the atmosphere by the reburning of combustion products in an excess of hydrocarbon. ${ }^{2}$ Kinetic studies have been performed on several CH plus NO_{x} reactions, i.e., $\mathrm{CH}+\mathrm{NO},{ }^{3} \mathrm{CH}+\mathrm{N}_{2} \mathrm{O},{ }^{4}$ and $\mathrm{CH}+\mathrm{NO}_{2} .{ }^{5,6}$ The former two reactions have also been the subject of theoretical investigations.

In 1982, Wagal et al. ${ }^{5}$ measured the total rate constant of the reaction $\mathrm{CH}+\mathrm{NO}_{2}$ and obtained that $k=1.67 \pm 0.11 \times 10^{-10}$ cm^{3} molecule ${ }^{-1} \mathrm{~s}^{-1}$ at 298 K . In 1998, Rim and Hershberger ${ }^{6}$ reported the direct measurements of the product branching ratios at 296 K using multiphoton photolysis of CHBr_{3} at 248 nm followed by time-resolved infrared diode laser products detection. They detected CO, NO, and CO_{2} in significant yields, while DCN (from CDBr_{3}), $\mathrm{N}_{2} \mathrm{O}, \mathrm{HCNO}$, and HNCO in undetectably low yields. On the basis of consideration of product yields and secondary chemistry, they found that the major product channel is $\mathrm{H}+\mathrm{CO}+\mathrm{NO}$ or $\mathrm{HNO}+\mathrm{CO}$, which together account for $92 \pm 4 \%$ of the total rate constant, whereas the minor product channel is $\mathrm{HCO}+\mathrm{NO}$, accounting for $8 \pm 4 \%$.

There still remain some unresolved problems of the important radical reaction $\mathrm{CH}+\mathrm{NO}_{2}$ based on Rim and Hershberger's experiment. ${ }^{6}$ First, it seems surprising that the very low-lying products $\mathrm{NH}+\mathrm{CO}_{2}(-644.2 \mathrm{~kJ} / \mathrm{mol}), \mathrm{HCN}+\mathrm{O}_{2}(-492.1 \mathrm{~kJ} /$ $\mathrm{mol}), \mathrm{HNCO}+\mathrm{O}(-479.7 \mathrm{~kJ} / \mathrm{mol})$, and $\mathrm{OH}+\mathrm{NCO}(-456.9$ $\mathrm{kJ} / \mathrm{mol}$) were not detected. Second, the observed NO yield is higher than can be accounted for by the title reaction. Third,
the measured product branching ratios were influenced by several secondary reactions, which make the actual mechanism of the title reaction somewhat unclear. To explain their experimental result, Rim and Hershberger proposed a possible mechanism, i.e., CH could bind to NO_{2} via either the nitrogen atom or an oxygen atom, forming an HCNO_{2} or HCONO complex, respectively. The HCNO_{2} complex might rearrange to the HCONO complex via CH migration from the nitrogen to a terminal oxygen atom. The HCONO complex then could dissociate to product $\mathrm{HCO}+\mathrm{NO}$ or rearrange to $\mathrm{CON}(\mathrm{H}) \mathrm{O}$ that could dissociate to product $\mathrm{HNO}+\mathrm{CO}$. Either of these product channels contains enough energy to further dissociate to product $\mathrm{H}+\mathrm{CO}+\mathrm{NO}$. However, without the knowledge of the detailed potential energy surface, it is surely difficult to discuss the mechanism of this reaction. In fact, Rim and Hershberger stated that "clearly, detailed ab initio calculations are needed to better understand characterize these reaction pathways". Unfortunately, we are not aware of any ab initio calculations on this important reaction.

Therefore, due to the importance of the title reaction and the rather limited knowledge about its reaction mechanism, we decide to carry out a systematic theoretical study. A detailed singlet potential energy surface (PES) is explored by means of density functional theory (DFT-B3LYP) and coupled cluster [CCSD(T)] (single-point) methods. Possible reaction pathways leading to various energetically accessible products are obtained. Finally, the mechanism of the title reaction is established to interpret the diode laser study of Rim and Hershberger.

2. Computational Methods

All computations are carried out using the GAUSSIAN98 program package. ${ }^{7}$ The optimized geometries and harmonic

TABLE 1: Total (au) and Relative Energies in Parentheses ($\mathrm{kcal} / \mathrm{mol}$) as Well as Those Including Zero-Point Vibration Energies ($\mathrm{kcal} / \mathrm{mol}$) of the Reactant and Products for the $\mathbf{C H}+\mathbf{N O}_{2}$ Reaction

species	B3LYP/6-311G(d,p)	$\operatorname{CCSD}(\mathrm{T}) / 6-311 \mathrm{G}(\mathrm{d}, \mathrm{p})$	$\operatorname{CCSD}(\mathrm{T}) / 6-311 \mathrm{G}(\mathrm{d}, \mathrm{p})+\mathrm{ZPVE}$	experimental reaction heats ${ }^{a}$
$\mathbf{R C H}+\mathrm{NO}_{2}$	-243.624 6931 (0.0)	-243.062 5676 (0.0)	0.0	
$\mathbf{P}_{\mathbf{1}} \mathrm{HCO}+\mathrm{NO}$	-243.813 2973 (-118.4)	-243.255 $6415(-121.2)$	-119.7	-118.0
$\mathbf{P}_{2} \mathrm{HNO}+\mathrm{CO}$	-243.855 1463 (-144.6)	-243.309 $3806(-154.9)$	-152.5	-152.7
$\mathbf{P}_{3} \mathrm{HON}+\mathrm{CO}$	-243.790 $0034(-103.7)$	-243.239 $9419(-111.3)$	-109.3	
$\mathbf{P}_{4}{ }^{1} \mathrm{NH}+\mathrm{CO}_{2}$	-243.795 $5562(-107.2)$	-243.248 3026 (-116.6)	-114.1	
$\mathbf{P}_{4}{ }^{3}{ }^{3} \mathrm{NH}+\mathrm{CO}_{2}$	-243.878 1971 (-159.1)	-243.323 2097 (-163.6)	-161.1	-154.1
$\mathbf{P}_{5} \mathrm{HNCO}+{ }^{1} \mathrm{O}$	-243.716 $2142(-57.4)$	-243.176748 $1(-71.6)$	-67.7	
$\mathbf{P}_{5}{ }^{\prime} \mathrm{HNCO}+{ }^{3} \mathrm{O}$	-243.818 3517 (-121.5)	-243.260 7273 (-124.3)	-120.4	-114.8
$\mathbf{P}_{6} \mathrm{HCNO}+{ }^{1} \mathrm{O}$	-243.605 8514 (11.8)	-243.063 $8573(-0.8)$	2.2	
$\mathbf{P}_{6}{ }^{\prime} \mathrm{HCNO}+{ }^{3} \mathrm{O}$	-243.707 $9889(-52.3)$	-243.147 $8365(-53.5)$	-50.5	-48.7
$\mathbf{P}_{7} \mathrm{HCN}+{ }^{1} \mathrm{O}_{2}$	-243.754 $6254(-81.5)$	-243.208 7533 (-91.7)	-88.5	
$\mathbf{P}_{7}{ }^{\prime} \mathrm{HCN}+{ }^{3} \mathrm{O}_{2}$	-243.816 $8088(-120.6)$	-243.2578818 (-122.3)	-119.1	-117.7
$\mathbf{P}_{8} \mathrm{NCO}+\mathrm{OH}$	-243.804 $5307(-112.8)$	-243.240 $8336(-111.9)$	-109.8	-109.3
$\mathbf{P}_{9} \mathbf{C N O}+\mathrm{OH}$	-243.703 $7902(-49.6)$	-243.140 2343 (-48.7)	-47.4	-42.8
$\mathbf{P}_{\mathbf{1 0}} \mathrm{CN}+\mathrm{HO}_{2}$	-243.687 2754 (-39.3)	-243.130 $6622(-42.7)$	-40.3	-45.5
$\mathbf{P}_{11} \mathrm{HNC}+{ }^{1} \mathrm{O}_{2}$	-243.731 $0639(-66.7)$	-243.184 1612 (-76.3)	-73.6	
$\mathbf{P}_{11}{ }^{\prime} \mathrm{HNC}+{ }^{3} \mathrm{O}_{2}$	-243.793 $1798(-105.7)$	-243.232 9897 (-106.9)	-104.2	-100.2
$\mathbf{P}_{12} \mathrm{H}+\mathrm{CO}+\mathrm{NO}$	-243.775 0935 (-94.4)	-243.233 $6925(-107.4)$	-110.9	-102.8

Figure 1. B3LYP/6-311G(d,p) optimized geometries for reactant and products. Bond lengths are in angstroms and angles in degrees.
frequencies of the reactant, products, local minima, and transition states structures are obtained at B3LYP/6-311G(d,p) theory level. Moreover, single-point calculations are performed at $\operatorname{CCSD}(\mathrm{T}) / 6-311 \mathrm{G}(\mathrm{d}, \mathrm{p})$ theory level using the B3LYP/6-311G(d,p) optimized geometries. The zero-point vibration energy (ZPVE) at the B3LYP/6-311G(d,p) level is also included. To confirm whether the obtained transition states connect with the right reactants and products, the intrinsic reaction coordinate (IRC) calculations are performed at the B3LYP/6-311G(d,p) level.

3. Results and Discussions

3.1. Products. Starting from the reactant $\mathbf{R C H}+\mathrm{NO}_{2}, 11$ energetically accessible primary product channels of the title reaction are considered in this paper. These products include $\mathbf{P}_{\mathbf{1}} \mathrm{HCO}+\mathrm{NO}, \mathbf{P}_{\mathbf{2}} \mathrm{HNO}+\mathrm{CO}, \mathbf{P}_{3} \mathrm{HON}+\mathrm{CO}, \mathbf{P}_{4}{ }^{1} \mathrm{NH}+$ $\mathrm{CO}_{2}, \mathbf{P}_{5} \mathrm{HNCO}+{ }^{1} \mathrm{O}, \mathbf{P}_{6} \mathrm{HCNO}+{ }^{1} \mathrm{O}, \mathbf{P}_{7} \mathrm{HCN}+{ }^{1} \mathrm{O}_{2}, \mathbf{P}_{\mathbf{8}} \mathrm{NCO}$ $+\mathrm{OH}, \mathbf{P}_{\mathbf{9}} \mathrm{CNO}+\mathrm{OH}, \mathbf{P}_{\mathbf{1 0}} \mathrm{CN}+\mathrm{HO}_{2}$, and $\mathbf{P}_{\mathbf{1 1}} \mathrm{HNC}+{ }^{1} \mathrm{O}_{2}$. The secondary product $\mathrm{H}+\mathrm{CO}+\mathrm{NO}$ that was identified experimentally by Rim and Hershberger is also included, namely, \mathbf{P}_{12}. Figure 1 shows the optimized geometries of the reactant and product molecules and radicals. In Table 1, total
and relative energies including ZPVE of all the 12 products as well as the corresponding experimental values of reaction heats are listed. Note that the energy of reactant \mathbf{R} is set zero for reference. The energetic order of the singlet products at the $\operatorname{CCSD}(\mathrm{T}) / 6-311 \mathrm{G}(\mathrm{d}, \mathrm{p}) / / \mathrm{B} 3 \mathrm{LYP} / 6-311 \mathrm{G}(\mathrm{d}, \mathrm{p})+$ ZPVE level is $\mathbf{P}_{\mathbf{2}}$ $(-152.5)>\mathbf{P}_{\mathbf{1}}(-119.7)>\mathbf{P}_{\mathbf{4}}(-114.1)>\mathbf{P}_{\mathbf{1 2}}(-110.9)>\mathbf{P}_{\mathbf{8}}$ $(-109.8)>\mathbf{P}_{\mathbf{3}}(-109.3)>\mathbf{P}_{7}(-88.5)>\mathbf{P}_{11}(-73.6)>\mathbf{P}_{\mathbf{5}}$ $(-67.7)>\mathbf{P}_{\mathbf{9}}(-47.4)>\mathbf{P}_{\mathbf{1 0}}(-40.3)>\mathbf{P}_{\mathbf{6}}(2.2)$. We can easily find that all these products lie well below the reactant except that $\mathbf{P}_{\mathbf{6}} \mathrm{HCNO}+{ }^{1} \mathrm{O}$ is $2.2 \mathrm{kcal} / \mathrm{mol}$ higher than \mathbf{R}. Among the former six low-lying products, the formation of $\mathbf{P}_{\mathbf{2}} \mathrm{HNO}+\mathrm{CO}$, $\mathbf{P}_{\mathbf{1}} \mathrm{HCO}+\mathrm{NO}$, and $\mathbf{P}_{\mathbf{1 2}} \mathrm{H}+\mathrm{CO}+\mathrm{NO}$ was indicated in the experiment by Rim and Hershberger. ${ }^{6}$ Note that the energies of triplet products $\mathbf{P}_{4}{ }^{\prime}{ }^{3} \mathrm{NH}+\mathrm{CO}_{2}, \mathbf{P}_{5}{ }^{\prime} \mathrm{HNCO}+{ }^{3} \mathrm{O}, \mathbf{P}_{6}{ }^{\prime}$ $\mathrm{HCNO}+{ }^{3} \mathrm{O}$, and $\mathbf{P}_{7}{ }^{\prime} \mathrm{HCN}+{ }^{3} \mathrm{O}_{2}$ are also listed for comparison. Clearly, all the singlet products $\mathbf{P}_{\mathbf{4}}, \mathbf{P}_{\mathbf{5}}, \mathbf{P}_{\mathbf{6}}, \mathbf{P}_{7}$, and $\mathbf{P}_{\mathbf{1 1}}$ are energetically much higher than the corresponding triplet products $\mathbf{P}_{4}^{\prime}, \mathbf{P}_{5}^{\prime}, \mathbf{P}_{6}^{\prime}, \mathbf{P}_{7}^{\prime}$, and $\mathbf{P}_{11}{ }^{\prime}$ since the ground state of NH, O, and O_{2} is triplet. It is also worthy of mentioning that product \mathbf{P}_{3} HON +CO was ignored in previous papers, ${ }^{5,6}$ yet as will be discussed in section 3.4, this product channel at least plays a comparable role to product $\mathbf{P}_{\mathbf{2}}=\mathrm{HNO}+\mathrm{CO}$ in determining the final yields.

It is worthwhile to compare our calculated relative energies with the experimentally determined reaction heats of the products. ${ }^{8}$ As shown in Table 1, for most products, the theoretical and experimental values agree well, except for $\mathbf{P}_{4}{ }^{\prime}$ ${ }^{3} \mathrm{NH}+\mathrm{CO}_{2}$ and $\mathbf{P}_{12} \mathrm{H}+\mathrm{CO}+\mathrm{NO}$ with large discrepancies of 7.0 and $8.1 \mathrm{kcal} / \mathrm{mol}$, respectively. However, as will be shown in section 3.4, such discrepancies will not affect our discussions on the reaction mechanism.
3.2. Isomers. Twenty-five singlet CHNO_{2} isomers are located as minima with their structures depicted in Figure 2. Table 2 shows the total and relative energies with inclusion of zeropoint vibration energies of all the isomers. The vibration frequencies and infrared intensities for the CHNO_{2} isomers are also listed in Table 4. These isomers can be classified into five groups, i.e., branched chainlike (isomers $\mathbf{1 , 2}, \mathbf{2}^{\prime}, \mathbf{3}, \mathbf{4}, \mathbf{4}^{\prime}, \mathbf{5}$, and 6), chainlike (isomers $\mathbf{7}, \mathbf{8}, \mathbf{8}^{\prime}, \mathbf{9}, \mathbf{1 0}$, and $\mathbf{1 1}$), threemembered ring (isomers 12, 13, and 14) and four-membered ring (isomers 15, 16, 17, 18, and 19) and weakly bound complexes (isomers 20, 21, and 22). Note that the isomers 2 and $\mathbf{2}^{\prime}, \mathbf{4}$ and $\mathbf{4}^{\prime}$, and $\mathbf{8}$ and $\mathbf{8}^{\prime}$ are three sets of cis-trans species. As listed in Table 2, all these isomers are lower in energy than

$\mathrm{O}_{1} \mathrm{NCH}=93.6$
$\mathrm{O}_{2} \mathrm{NO}_{1} \mathrm{C}=-175.3$
1

2

$2^{\prime}(\mathrm{Cs})$

3 (Cs)

4 (Cs)

4' (Cs)

5

$\mathrm{O}_{2} \mathrm{NCO}_{1}=178.0$
$\mathrm{HO}_{2} \mathrm{NC}=153.1$
6

7 (Cs)

8 (Cs)

$8^{\prime}(\mathrm{Cs})$
11 (Cs)

$\mathrm{CO}_{2} \mathrm{NH}=-103.9$
$\mathrm{O}_{2} \mathrm{CO}_{1} \mathrm{~N}=-178.2$
13 (Cs)
12

20 (Cs)

21 (Cs)

$17\left(\mathrm{C}_{2 \mathrm{v}}\right)$

18 (Cs)

19

Figure 2. B3LYP/6-311G(d,p) optimized geometries for CHNO_{2} isomers. Bond lengths are in angstroms and angles in degrees.
TABLE 2: Total (au) and Relative Energies in Parentheses ($\mathrm{kca} / \mathrm{mol}$) as Well as Those Including Zero-Point Vibration Energies (kcal/mol) of the Isomers for the $\mathbf{C H}+\mathbf{N O}_{2}$ Reaction

species	B3LYP/6-311G(d,p)	$\operatorname{CCSD}(\mathrm{T}) / 6-311 \mathrm{G}(\mathrm{d}, \mathrm{p})$	$\operatorname{CCSD}(\mathrm{T}) / 6-311 \mathrm{G}(\mathrm{d}, \mathrm{p})+\mathrm{ZPVE}$
1	-243.732 5906 (-67.7)	-243.162 3016 (-62.6)	-57.3
2	-243.852 6758 (-143.1)	-243.294 7925 (-145.7)	-140.2
2,	-243.857 $5821(-146.1)$	-243.299 8897 (-148.9)	-143.2
3	-243.833 0584 (-130.8)	-243.256 7614 (-121.9)	-115.9
4	-243.847980 2 (-140.1)	-243.287 4062 (-141.1)	-134.5
4,	-243.846 9718 (-139.5)	-243.287062 7 (-140.9)	-136.9
5	-243.722 7149 (-61.5)	-243.160 0702 (-61.2)	-55.5
6	-243.713 0027 (-55.4)	-243.147 8881 (-53.5)	-48.5
7	-243.894 $2749(-169.2)$	-243.324 9780 (-164.7)	-157.7
8	-243.837 2314 (-133.3)	-243.264 0370 (-126.4)	-120.5
8 ,	-243.841 2982 (-135.9)	-243.269 7729 (-130.0)	-123.4
9	-243.825 2210 (-125.8)	-243.262 3633 (-125.4)	-119.3
10	-243.740 4121 (-72.6)	-243.177 $5312(-72.1)$	-66.9
11	-243.679 2977 (-34.3)	-243.103 2420 (-25.2)	-21.2
12	-243.8761729 (-157.8)	-243.313 9828 (-157.8)	-150.7
13	-243.825 7785 (-126.2)	-243.263 3526 (-126.0)	-119.5
14	-243.672 0791 (-29.7)	-243.108 $6347(-28.9)$	-24.2
15	-243.777 9867 (-96.2)	-243.215 6055 (-96.0)	-89.1
16	-243.727 7481 (-64.7)	-243.163 9399 (-63.0)	-57.1
17	-243.780 9806 (-98.1)	-243.2178213 (-97.4)	-91.0
18	-243.764 6813 (-87.8)	-243.206 0138 (-90.0)	-83.0
19	-243.685 2688 (-38.0)	-243.122 3003 (-37.5)	-32.8
20	-243.802 2955 (-100.2)	-243.246 6703 (-115.5)	-109.6
21	-243.801 9795 (-111.2)	-243.246 $3355(-115.3)$	-111.3
22	-243.717 2534 (-58.1)	-243.163 4642 (-63.3)	-59.5

TABLE 3: Total (a.u.) and Relative Energies in Parentheses ($\mathbf{k c a l} / \mathrm{mol}$) as Well as Those Including Zero-Point Vibration Energies ($\mathbf{k c a l} / \mathrm{mol}$) of the Transition States for the $\mathbf{C H}+\mathbf{N O}_{\mathbf{2}}$ Reaction

species	B3LYP/6-311G(d,p)	$\operatorname{CCSD}(\mathrm{T}) / 6-311 \mathrm{G}(\mathrm{d}, \mathrm{p})$	$\operatorname{CCSD}(\mathrm{T}) / 6-311 \mathrm{G}(\mathrm{d}, \mathrm{p})+$ ZPVE
TS1/1	-243.727 1936 (-64.3)	-243.155 5430 (-58.3)	-53.5
TS1/2	-243.731 8523 (-67.2)	-243.161 3501 (-62.0)	-57.1
TS2/2	-243.852 4742 (-142.9)	-243.294 7438 (-145.7)	-140.3
TS2/2,	-243.8519869 (-142.6)	-243.293 $8201(-145.1)$	-139.9
TS2/15	-243.749 9676 (-78.6)	-243.192 3584 (-81.4)	-76.0
TS2/P ${ }_{2}$	-243.779 9505 (-97.4)	-243.219 6669 (-98.6)	-94.5
TS2 ${ }^{1} 3$	-243.792 0928 (-105.0)	-243.220 0579 (-98.8)	-96.5
TS2'/8'	-243.753 5665 (-80.9)	-243.178 9310 (-73.0)	-70.4
TS2 ${ }^{\prime} / 21$	-243.799 7507 (-109.9)	-243.238 8947 (-110.6)	-108.6
TS2 ${ }^{\prime} / \mathbf{P}_{1}$	-243.762 7440 (-86.6)	-243.249 $8591(-117.5$)	-115.2
TS2 ${ }^{\prime} / \mathbf{P}_{2}$	-243.793 2215 (-105.8)	-243.235 $4647(-108.5$)	-107.3
TS3/7	-243.792 5135 (-105.3)	-243.2165339 (-96.6)	-93.0
TS3/12	-243.828 2037 (-127.7)	-243.252989 2 (-119.5)	-114.0
TS3/16	-243.725 8156 (-63.5)	-243.160 8132 (-61.7)	-56.5
TS3/P ${ }_{2}$	-243.828 2476 (-127.7)	-243.263 8285 (-126.3)	-121.2
TS4/4	-243.775 7026 (-94.8)	-243.209 6096 (-92.3)	-89.4
TS4/4'	-243.837 $8798(-133.8)$	-243.279 3829 (-136.1)	-120.4
TS4/7	-243.829 1135 (-128.3)	-243.260 9399 (-124.5)	-119.1
TS4/8,	-243.773 7696 (-93.5)	-243.2118881 (-93.7)	-88.5
TS5/9	-243.709 4158 (-53.2)	-243.146 0103 (-52.4)	-47.1
TS5/10	-243.655 0804 (-19.1)	-243.091 2939 (-18.0)	-13.0
TS6/6	-243.7129423 (-55.4)	-243.147 8276 (-53.5)	-48.6
TS6/6*	-243.7079040 (-52.2)	-243.143 2486 (-50.6)	-45.8
TS6/P3	-243.703 3165 (-49.3)	-243.140 2826 (-48.8)	-44.0
TS7/7	-243.884 5603 (-163.1)	-243.315 3042 (-158.6)	-125.2
TS7/12	-243.801 0127 (-110.6)	-243.238 8426 (-110.6)	-107.3
TS7/P3,	-243.791 8694 (-104.9)	-243.2367302 (-109.3)	-105.8
TS8 ${ }^{\prime}$ ' ${ }^{\prime}$	-243.765 8984 (-88.6)	-243.210 7892 (-93.0)	-87.7
TS9/9	-243.824 6374 (-125.5)	-243.261 3005 (-124.7)	-118.9
TS9/9*	-243.8179869 (-121.3)	-243.254 3519 (-120.3)	-114.5
TS9/10	-243.6982212 (-46.1)	-243.135 1703 (-45.6)	-41.5
TS10/10	-243.732 3997 (-67.6)	-243.168 7875 (-66.7)	-61.9
TS10/15	-243.646 0623 (-13.4)	-243.082 $6432(-12.6)$	-10.0
TS11/11	-243.647 2590 (-14.2)	-243.076742 4 (-8.9)	-4.9
TS11/15	-243.668 0865 (-27.2)	-243.107 8415 (-28.4)	-24.2
TS11/P7	-243.677 1136 (-32.9)	-243.110 5094 (-30.1)	-27.1
TS12/12	-243.841 8783 (-136.3)	-243.274 0425 (-132.7)	-127.1
TS13/13	-243.8019020 (-111.2)	-243.234 9779 (-108.2)	-103.3
TS13/16	-243.699 4079 (-46.9)	-243.134 2353 (-45.0)	-40.2
TS13/P ${ }_{11}$	-243.711 1733 (-54.3)	-243.140 4997 (-48.9)	-46.2
TS14/P7	-243.671 $8232(-29.6$)	-243.107 5699 (-28.2)	-23.9
TS15/16	-243.6739025 (-30.9)	-243.111 8765 (-30.9)	-27.4
TS17/19	-243.657904 5 (-20.8)	-243.098 7613 (-22.7)	-20.1
TS17/P1	-243.7100010 (-53.5)	-243.1487653 (-54.1)	-50.0
TS18/P \mathbf{P}_{4}	-243.739 0840 (-71.8)	-243.185 6295 (-77.2)	-72.4 -103
$\mathrm{TSP}_{1} / \mathbf{P}_{1}$	-243.780 1448 ((-97.6)	-243.2317923 ${ }^{(-106.2)}$	-103.0
$\mathrm{TSP}_{1} / \mathbf{P}_{2} \mathbf{T S P}_{1} / \mathbf{P}_{12}$	$-243.7904561(-104.0)$ $-243.7740029(-93.7)$	-234.231 1931 (-105.8)	-102.3 -106.3
$\mathrm{TSP}_{2} / \mathbf{P}_{4}$	-243.7875675 (-102.2)	-243.228 $6969(-104.2)$	-99.6
$\mathrm{TSP}_{3} / \mathbf{P}_{3}$	-243.745 0155 (-75.5)	-243.188 7562 (-79.2)	-74.6

reactant \mathbf{R}. At the $\operatorname{CCSD}(\mathrm{T}) / 6-311 \mathrm{G}(\mathrm{d}, \mathrm{p}) / / \mathrm{B} 3 \mathrm{LYP} / 6-311 \mathrm{G}-$ (d,p)+ZPVE level, the energetic order of these isomers can be written as $\mathbf{7}(-157.7)>\mathbf{1 2}(-150.7)>\mathbf{2}^{\prime}(-143.2)>2$ $(-140.2)>\mathbf{4}^{\prime}(-136.9)>4(-134.5)>\mathbf{8}^{\prime}(-123.4)>8$ $(-120.5)>13(-119.5)>9(-119.3)>3(-115.9)>21$ $(-111.3)>20(-109.6)>17(-91.0)>15(-89.1)>18$ $(-83.0)>10(-66.9)>22(-59.5)>1(-57.3)>16(-57.1)$ $>5(-55.5)>6(-48.5)>19(-32.8)>14(-24.2)>11$ (-21.2). The lowest-lying isomer is the chainlike structure 7 bearing $\mathrm{HO}-\mathrm{N}=\mathrm{C}=\mathrm{O}$ skeleton. The second lowest lying isomer $\mathbf{1 2}$ is a three-membered species formed by the side attack of ${ }^{1} \mathrm{NH}$ at CO_{2}. In isomer $\mathbf{1 2}$, both N and C are triple-coordinated while O is double-coordinated. The cis-trans isomers 2 and $\mathbf{2}^{\prime}$ have the branched chainlike structure $\mathrm{O}=\mathrm{C}(\mathrm{H})-\mathrm{N}=\mathrm{O}$. The cistrans isomers $\mathbf{4}$ and $\mathbf{4}^{\prime}, \mathbf{8}$ and $\mathbf{8}^{\prime}$ can be viewed as the respective adducts of OH on NCO and CNO radicals both at the C atom site. For simplicity, the structural details of the other isomers are omitted.

In Rim and Hershberger's experiment, ${ }^{6}$ a chainlike isomer HCONO was suggested as a very important intermediate to form the observed products $\mathrm{HCO}+\mathrm{NO}, \mathrm{H}+\mathrm{CO}+\mathrm{NO}$. However, despite numerous attempts, optimization of such a structure often
leads to product $\mathbf{P}_{\mathbf{1}} \mathrm{HCO}+\mathrm{NO}$. Also, attempts to search for the respective cis- [dihedral angle $\angle \mathrm{HNCO}_{(2)}=0^{\circ}$] and trans[dihedral angle $\angle \mathrm{HO}_{(2)} \mathrm{NC}=0^{\circ}$] forms of the branched chainlike isomers $3 \mathrm{O}_{(1)} \mathrm{N}(\mathrm{H}) \mathrm{CO}_{(2)}$ and $6 \mathrm{HO}_{(2)} \mathrm{N}(\mathrm{C}) \mathrm{O}_{(1)}$ fail. Moreover, for the chainlike isomers 7, $\mathbf{8}\left(\mathbf{8}^{\prime}\right), \mathbf{9}, \mathbf{1 0}$, and 11, searching for several other kinds of isomeric forms is unsuccessful. We take the skeleton $\mathrm{HO}_{(2)} \mathrm{NCO}_{(1)}$ for example. We can formally write four isomers, isomer with $\angle \mathrm{HO}_{(2)} \mathrm{NC}=0^{\circ}$ and $\angle \mathrm{O}_{(2)} \mathrm{NCO}_{(1)}=0^{\circ}$, isomer with $\angle \mathrm{HO}_{(2)} \mathrm{NC}=0^{\circ}$ and $\angle \mathrm{O}_{(2)^{-}}$ $\mathrm{NCO}_{(1)}=180^{\circ}$, isomer with $\angle \mathrm{HO}_{(2)} \mathrm{NC}=180^{\circ}$ and $\angle \mathrm{O}_{(2)^{-}}$ $\mathrm{NCO}_{(1)}=0^{\circ}$, and isomer with $\angle \mathrm{HO}_{(2)} \mathrm{NC}=180^{\circ}$ and $\angle \mathrm{O}_{(2)} \mathrm{NCO}_{(1)}=180^{\circ}$. However, only isomer 7 with $\angle \mathrm{HO}_{(2)} \mathrm{NC}$ $=180^{\circ}$ and $\angle \mathrm{O}_{(2)} \mathrm{NCO}_{(1)}=180^{\circ}$ is located.
3.3. Transition States and Isomerization. To make clear the interrelation between various HCNO_{2} isomers, 50 transition states are obtained. The symbol $\mathbf{T S m} / \mathbf{n}$ is used to denote the transition state connecting the isomers \mathbf{m} and \mathbf{n}. The optimized structures of the transition states are given in Figure 3, while the energetics is listed in Table 3. Their vibration frequencies and infrared intensities are presented in Table 5. By means of the transition states and their connected isomers or products, a

TABLE 4: Harmonic Vibration Frequencies (cm^{-1}) with Infrared Intensities in Parentheses ($\mathbf{k m} / \mathrm{mol}$) for $\mathbf{C H N O}_{2}$ Isomers at the B3LYP/6-311G(d,p) Level

isomers	harmonic frequencies (infrared intensities)
$\mathbf{1}$	$254(3) 522(19) 567(21) 854(208) 972(51) 1095(26) 1209(83) 1774(364) 3093(0)$
$\mathbf{2}$	$88(12) 330(9) 609(3) 702(23) 1000(34) 1333(1) 1673(56) 1836(145) 2965(81)$
$\mathbf{2}$,	$111(12) 395(22) 514(1) 910(3) 949(9) 1307(6) 1659(47) 1875(167) 2908(75)$
$\mathbf{3}$	$213(27) 252(14) 569(63) 597(3) 955(50) 1179(86) 1438(18) 2284(478) 3376(26)$
$\mathbf{4}$	$412(135) 420(13) 499(24) 641(32) 1021(51) 1170(90) 1470(147) 1823(261) 2769(117)$
$\mathbf{4}$	$433115) 433(22) 508(8) 644(40) 1014(39) 1172(137) 1484(35) 1798(321) 3782(107)$
$\mathbf{5}$	$193(12) 400(24) 451(6) 542(76) 685(41) 1027(31) 1220(85) 2392(46) 3696(226)$
$\mathbf{6}$	$247(18) 299(108) 383(0) 517(22) 944(18) 1249(412) 1468(182) 2345(158) 3810(173)$
$\mathbf{7}$	$240(8) 253(147) 527(12) 697(21) 886(54) 1297(80) 1501(41) 1305(664) 3825(99)$
$\mathbf{8}$	$40(47) 107(63) 388(15) 470(12) 900(13) 1257(102) 1424(370) 2475(89) 3715(76)$
$\mathbf{8}$	$247(18) 299(108) 383(0) 517(22) 944(18) 1249(412) 1468(182) 2345(158) 3810(173)$
$\mathbf{9}$	$185(122) 250(14) 509(13) 607(5) 818(5) 1071(8) 1380(14) 2323(42) 3742(81)$
$\mathbf{1 0}$	$159(0) 248(73) 344(56) 543(8) 819(15) 943(4) 1381(50) 2140(79) 3725(57)$
$\mathbf{1 1}$	$157(74) 222(8) 431(12) 522(3) 617(10) 647(40) 1057(44) 2279(182) 3478(344)$
$\mathbf{1 2}$	$554(9) 576(35) 664(15) 939(96) 1075(42) 1127(54) 1240(27) 2046(545) 34033(12)$
$\mathbf{1 3}$	$510(24) 600(10) 690(14) 764(92) 883(57) 1083(83) 1154(53) 1978(417) 3556(39)$
$\mathbf{1 4}$	$282(33) 408(28) 549(20) 784(4) 959(44) 1122(24) 1230(3) 1424(29) 3153(13)$
$\mathbf{1 5}$	$619(15) 796(19) 821(21) 848(7) 1065(11) 114(44) 1287(31) 1650(15) 3268(1)$
$\mathbf{1 6}$	$226(145) 527(84) 589(18) 884(11) 1059(13) 1144(27) 1217(5) 1465(25) 3629(81)$
$\mathbf{1 7}$	$533(52) 664(5) 703(4) 779(67) 1117(6) 1156(14) 1376(0) 1493(48) 3284(13)$
$\mathbf{1 8}$	$525(10) 779(1) 888(19) 1062(0) 1097(78) 1238(64) 1250(23) 1313(9) 3367(6)$
$\mathbf{1 9}$	$325(83) 491(22) 624(89) 711(24) 769(32) 913(8) 966(75) 1407(21) 3713(155)$
$\mathbf{2 0}$	$190(19) 279(3) 249(17) 605(21) 633(2) 1086(252) 1793(756) 1961(43) 2806(146)$
$\mathbf{2 1}$	$125(13) 136(0) 198(6) 446(80) 791(77) 1372(121) 1519(26) 2182(252) 2674(95)$
$\mathbf{2 2}$	$53(5) 197(3) 215(26) 554(92) 615(21) 1154(130) 1394(258) 1722(463) 3409(22)$

TABLE 5: Harmonic Vibration Frequencies (cm^{-1}) with Infrared Intensities in Parentheses ($\mathbf{k m} / \mathrm{mol}$) for CHNO_{2} Transition States at the B3LYP/6-311G(d,p) Level

species	harmonic frequencies (infrared intensities)
TS1/1	-258(2) 595(45) 622(19) 655(28) 990(26) 1105(14) 1442(54) 1548(258) 3024(1)
TS1/2	-325(115) 504(19) 561(4) 738(220) 973(71) 1023(46) 1193(29) 1882(417) 3178(10)
TS2/2	-71(15) 314(6) 593(3) 833(3) 865(57) 1324(2) 1688(66) 1864(117) 2973(57)
TS2/2'	-127(6) 296(5) 471(24) 707(33) 1045(5) 1338(5) 1659(50) 1837(183) 2927(74)
TS2/15	-1165(110) 591(25) 860(11) 939(25) 1038(80) 1111(8) 1286(11) 1410(17) 3213(0)
TS2/P2	-1241(410) 226(872) 270(0) 475(30) 592(5) 852(24) 1744(872) 1952(118) 3534(104)
TS2 ${ }^{1 / 3}$	-1293(307) 297(19) 414(50) 546(22) 718(1) 1088(28) 1498(349) 1714(70) 1952(311)
TS2'/8'	-1631(1061) 233(9) 305(12) 309(7) 534(1) 939(16) 1404(506) 2122(71) 2628(237)
TS2 ${ }^{1} 21$	-773(51) 130(1) 134(3) 630(55) 744(36) 1060(30) 1400(250) 1789(37) 2139(420)
TS2'/ \mathbf{P}_{1}	-225(5) 52(3) 170(1) 312(0) 381(36) 1082(591) 1742(600) 1980(984) 2564(356)
TS2'/P2	-903(160) 92(1) 170(2) 418(43) 496(14) 1027(115) 1482(179) 1867(975) 1994(150)
TS3/7	-1297(746) 139(11) 405(82) 539(58) 607(15) 797(15) 1251(1) 2288(711) 2969(347)
TS3/12	-399(70) 351(176) 418(29) 541(10) 902(26) 1161(74) 1317(1) 2328(637) 3503(70)
TS3/16	-302(238) 138(113) 528(29) 852(21) 992(9) 1240(40) 1364(75) 1573(35) 3652(91)
TS3/P ${ }_{2}$	-437(53) 140(7) 464(50) 613(6) 993(125) 1388(229) 1504(23) 2009(301) 3010(31)
TS4/4	-1995(286) 257(2) 579(1) 707(8) 970(108) 1111(27) 1422(187) 1539(63) 2102(161)
TS4/4,	-451(137) 386(17) 519(2) 591(39) 991(69) 1179(130) 1400(73) 1787(216) 3811(145)
TS4/7	-384(23) 340(91) 516(11) 669(28) 918(87) 1158(91) 1375(30) 1688(94) 3757(139)
TS4/8'	-538(37) 322(25) 429(81) 618(110) 943(240) 1180(21) 1289(207) 1698(41) 3788(168)
TS5/9	-457(127) 404(13) 422(7) 725(16) 857(58) 975(44) 1125(113) 2246(137) 3630(159)
TS5/10	-386(144) 395(29) 641(5) 758(2) 829(106) 957(5) 1164(67) 1738(45) 3648(166)
TS6/6	-107(142) 288(19) 479(16) 542(3) 832(121) $1162(61) 1340$ (144) 1724(1) 3694(113)
TS6/6*	-46(122) 263(31) 493(6) 537(6) 799(90) 1184(146) 1373(16) 1660(30) 3705(65)
TS6/P3	-442(1) 334(73) 390(50) 439(34) 899(49) 1020(52) 1391(101) 1797(36) 3720(99)
TS7/7	-216(94) 223(38) 515(35) 696(23) 861(43) 1388(10) 1391(18) 2301(603) 3743(24)
TS7/12	-1670(75) 436(40) 598(59) 624(11) 776(81) 908(107) 1125(6) 2049(594) 2439(71)
TS7/P3	-102(1) 54(11) 146(14) 256(6) 527(159) 1249(86) 1461(9) 2193(171) 3216(67)
TS8 ${ }^{\prime} / 8^{\prime}$	-283(0) 366(3) 481(5) 724(46) 779(43) 1245(115) 1393(97) 1670(65) 3728(132)
TS9/9	-144(146) 241(0) 499(7) 601(6) 814(6) 1074(11) 1242(70) 2324(41) 3758(99)
TS9/9*	-341(115) 235(19) 499(21) 626(1) 802(9) 1096(30) 1423(46) 2304(50) 3693(39)
TS9/10	-448(11) 257(2) 376(14) 425(105) 567(58) 933(64) 1428(51) 1833(13) 3704(16)
TS10/10	-410(124) 172(4) 298(4) 522(16) 814(26) 960(19) 1420(45) 2119(59) 3719(40)
TS10/15	-1488(131) 409(106) 559(5) 725(53) 880(6) 981(88) $1142(15) 1509(26) 2233(94)$
TS11/11	-479(294) 396(0) 462(33) 719(132) 765(30) 815(10) 1009(18) 1995(269) 3254(39)
TS11/15	-417(10) 479(70) 672(321) 743(37) 815(33) 926(17) 1099(16) 1627(32) 3187(12)
TS11/P ${ }_{7}$	-545(73) 171(9) 383(188) 575(326) 699(78) 755(32) 1066(40) 1834(55) 3249(42)
TS12/12	-948(251) 476(58) 600(10) 650(11) 772(104) 1050(28) 1191(10) 2080(699) 3729(282)
TS13/13	-853(271) 243(170) 546(2) 615(1) 710(25) 819(43) 1103(45) 2129(621) 3940(471)
TS13/16	-456(159) 424(27) 601(105) 621(13) 878(7) 943(89) 1360(40) 1633(100) 3543(104)
TS13/P ${ }_{11}$	-562(64) 99(31) 256(156) 260(140) 338(66) 511(6) 1208(145) 2063(228) 3813(506)
TS14/P ${ }_{7}$	-314(56) 352(10) 537(19) 822(16) 976(25) 1094(30) 1210(4) 1476(27) 3180(7)
TS15/16	-1459(59) 633(2) 721(47) 828(5) 1063(7) 1133(64) $1163(11) 1335(47)$ 2188(48)
TS17/19	-1495(116) 386(58) 677(5) 869(42) 934(19) 1050(4) 1221(10) 1314(42) 2018(21)
TS17/P ${ }_{1}$	-694(53) 431(56) 631(30) 854(29) 895(19) 999(55) 1310(44) 1464(71) 2946(40)
TS18/P ${ }_{4}$	-391(124) 268(61) 531(8) 680(22) 905(27) 1219(49) 1345(60) 1713(237) 2228(7)
TSP1/ $/ \mathbf{P}_{1}$	-303(4) 164(4) 270(7) 411(10) 656(13) 1148(395) 1705(531) 1939(608) 2599(165)
TSP1/ $/ \mathbf{P}_{2}$	-250(10) 135 (9) 310(57) 349(4) 768(12) 1124(207) 1687(637) 1936(240) 2763(183)
$\mathrm{TSP}_{2} / \mathbf{P}_{4}$	-523(147) 114(8) 455(73) 580(13) 770(78) 1081(66) 1536(34) 1963(364) 3351(6)
$\mathrm{TSP}_{3} / \mathbf{P}_{3}$	-392(140) 414(4) 483(4) 688(4) 751(73) 915(38) 1318(68) 1516(54) 3754(82)

$\mathrm{HO}_{1} \mathrm{O}_{2} \mathrm{C}=-106.7$

TS4/4 (Cs)

TS4/4'

TS6/6*

TS9/9 (Cs)

TS7/7 (Cs)

TS10/10

$\mathrm{NCO}_{2}=13.4$
HNCO
$\mathrm{H}=124.1$
TS13/16

$\mathrm{NCO}_{2} \mathrm{O}_{1}=-179.8$
$1: \mathrm{NCO}_{2}=1.3$
TS13/P ${ }_{11}$

TS11/15

 TS14P,

TS12/12 (Cs)

TS11/P \mathbf{P}_{7}

$\mathrm{TSP}_{2} / \mathrm{P}_{4}$

Figure 3. B3LYP/6-311G(d,p) optimized geometries for CHNO_{2} transition states. Bond lengths are in angstroms and angles in degrees.

Figure 4. (a) Schematic pathways for the products $\mathbf{P}_{\mathbf{1}} \mathrm{HCO}+\mathrm{NO}, \mathbf{P}_{\mathbf{2}} \mathrm{HNO}+\mathrm{CO}, \mathbf{P}_{\mathbf{3}} \mathrm{HON}+\mathrm{CO}$ and $\mathbf{P}_{\mathbf{1}} \mathbf{H}+\mathrm{CO}+\mathrm{NO}$ for the $\mathrm{CH}+\mathrm{NO} 2$ reaction. Relative energies are calculated at the $\operatorname{CCSD}(\mathrm{T}) / 6-311 \mathrm{G}(\mathrm{d}, \mathrm{p}) / / \mathrm{B} 3 \mathrm{LYP} / 6-311 \mathrm{G}(\mathrm{d}, \mathrm{p})+\mathrm{ZPVE}$ level. (b) Schematic pathways for the products $\mathbf{P}_{4}{ }^{1} \mathrm{NH}+\mathrm{CO}_{2}, \mathbf{P}_{\mathbf{5}} \mathrm{HNCO}+{ }^{1} \mathrm{O}, \mathbf{P}_{\mathbf{6}} \mathrm{HCNO}+{ }^{1} \mathrm{O}, \mathbf{P}_{7} \mathrm{HCN}+{ }^{1} \mathrm{O}_{2}, \mathbf{P}_{\mathbf{8}} \mathrm{NCO}+\mathrm{OH}, \mathbf{P}_{\mathbf{9}} \mathrm{CNO}+\mathrm{OH}, \mathbf{P}_{\mathbf{1 0}} \mathrm{CN}+\mathrm{HO}_{2}$, and $\mathbf{P}_{\mathbf{1 1}} \mathrm{HNC}+{ }^{1} \mathrm{O}_{2}$ for the $\mathrm{CH}+$ NO_{2} reaction. Relative energies are calculated at the $\operatorname{CCSD}(\mathrm{T}) / 6-311 \mathrm{G}(\mathrm{d}, \mathrm{p}) / / \mathrm{B} 3 \mathrm{LYP} / 6-311 \mathrm{G}(\mathrm{d}, \mathrm{p})+\mathrm{ZPVE}$ level.
schematic potential energy surface (PES) of HCNO_{2} in singlet is plotted in Figure 4a, b. Among these transition states, fifteen species (TS1/1, TS2/2, TS4/4, TS6/6, TS6/6*, TS7/7, TS8'/8', TS9/9, TS9/9*, TS10/10, TS11/11, TS12/12, TS13/13, TSP ${ }_{1} /$
$\mathbf{P}_{\mathbf{1}}$, and $\mathbf{T S} \mathbf{P}_{3} / \mathbf{P}_{\mathbf{3}}$) are associated with the degenerate isomerization between isomers or products. Since they are unimportant for discussing the mechanism of the title reaction, their details are not given and are not presented in Figure 4a,b, either.

On the basis of the PES, we can discuss the isomerization and dissociation processes of various singlet HCNO_{2} isomers starting from reactant \mathbf{R}. The initial step is formation of isomer $\mathrm{HCNO}_{2}(\mathbf{1})$ when the C atom of CH attacks the $\mathrm{NO} \pi$ bonding of NO_{2}. Isomer 1 can easily isomerize to the low-lying isomer cis- $\mathrm{OC}(\mathrm{H}) \mathrm{NO} 2$ and then to trans- $\mathrm{OC}(\mathrm{H}) \mathrm{NO} \mathbf{2}^{\prime}$ with the respective barrier of only 0.2 and $0.3 \mathrm{kcal} / \mathrm{mol}$. The formation of product $\mathbf{P}_{\mathbf{1}} \mathrm{HCO}+$ NO may take place via two pathways: Path $P_{1}(1): R \rightarrow \mathbf{R} \rightarrow 2 \rightarrow P_{1}$ and Path P_{1} (2): $R \rightarrow 1 \rightarrow$ $\mathbf{2} \rightarrow \mathbf{2}^{\prime} \rightarrow \mathbf{P}_{\mathbf{1}}$. Since the interconversion between $\mathbf{2}$ and $\mathbf{2}^{\prime}$ is very easy (the barrier from $\mathbf{2}^{\prime}$ to $\mathbf{2}$ is just $3.0 \mathrm{kcal} / \mathrm{mol}$), both pathways may be significant in determining the formation of \mathbf{P}_{1}. It should be pointed out that we find no dissociation transition states of $\mathbf{2}$ and $\mathbf{2}^{\prime}$ to $\mathbf{P}_{\mathbf{1}}$ at the C atom site. Surprisingly, we happen to find a transition state $\mathbf{T S} \mathbf{2}^{\prime} / \mathbf{P}_{\mathbf{1}}$, whose structure is very loose and a little strange, i.e., the distance between N and O atoms $(2.195 \AA$) is much longer than that between N and C atoms ($3.367 \AA$). This may, on the other hand, mean that the NO attack on HCO radical at the C atom site is barrierless while attack at the O atom site needs to overcome the barrier of 4.5 $\mathrm{kcal} / \mathrm{mol}$. It should be noted that for $\mathbf{T S}^{\prime} / \mathbf{P}_{\mathbf{1}}$, the relative energy calculated at the B3LYP level ($-86.6 \mathrm{kcal} / \mathrm{mol}$) differs considerably from the $\operatorname{CCSD}(\mathrm{T})$ value ($-115.2 \mathrm{kcal} / \mathrm{mol}$) by about $30 \mathrm{kcal} / \mathrm{mol}$. This indicates that electron correlation is rather important in determining the energetics of such a process. Further calculations at higher-levels such as configuration interaction method may surely be useful. However, we expect that NO attack at the O atom of HCO to form isomer $\mathrm{OC}(\mathrm{H})$ NO $\mathbf{2}^{\prime}$ is a barrier-consumed process due to the repulsion between the lone-pair electrons at O atom of HCO and at N atom of NO. Then it is safe for us to conclude that the direct dissociation of isomer $\mathbf{2}$ and $\mathbf{2}^{\prime}$ to $\mathbf{P}_{\mathbf{1}}$ is more favorable than that via TS2 $\mathbf{2}^{\prime} / \mathbf{P}_{\mathbf{1}}$, and the significant electron correlation effect on $\mathbf{T S} \mathbf{2}^{\prime} / \mathbf{P}_{1}$ will not influence the discussion of reaction mechanism. Therefore, $\mathbf{T S}^{\prime} / \mathbf{P}_{\mathbf{1}}$ will not be considered further in the present paper.

Product $\mathbf{P}_{\mathbf{2}} \mathrm{HNO}+\mathrm{CO}$ may be formed via five reaction pathways:

Path $P_{2}(1): R \rightarrow \mathbf{1} \rightarrow 2 \rightarrow P_{2}$
Path $\mathrm{P}_{2}(2): \mathrm{R} \rightarrow \mathbf{1} \rightarrow 2 \rightarrow 2^{\prime} \rightarrow \mathrm{P} 2$

Path $P_{2}(3): R \rightarrow 1 \rightarrow 2 \rightarrow 2^{\prime} \rightarrow 3 \rightarrow P_{2}$

Path $P_{2}(4): R \rightarrow 1 \rightarrow 2 \rightarrow 2^{\prime} \rightarrow 8^{\prime} \rightarrow 4 \rightarrow 7 \rightarrow 3 \rightarrow P_{2}$
Path $P_{2}(5): R \rightarrow 1 \rightarrow 2 \rightarrow 2^{\prime} \rightarrow 8^{\prime} \rightarrow$

$$
4 \rightarrow 7 \rightarrow 12 \rightarrow 3 \rightarrow P_{2}
$$

In principle, all the five pathways may contribute to the formation of $\mathbf{P}_{\mathbf{2}}$ since all the intermediates and transition states are significantly lower in energy than reactant \mathbf{R}. Yet, since the relative energy of the rate determining transition state TS2 ${ }^{\prime} /$ $\mathbf{P}_{\mathbf{2}}(-107.3 \mathrm{kcal} / \mathrm{mol})$ of $\mathbf{P a t h} \mathbf{P}_{\mathbf{2}}(\mathbf{2})$ is much lower than TS2/ $\mathbf{P}_{\mathbf{2}}(-94.5 \mathrm{kcal} / \mathrm{mol})$ of Path $\mathbf{P}_{\mathbf{2}}(\mathbf{1})$, TS2 ${ }^{\prime} / \mathbf{3}(-96.5 \mathrm{kcal} / \mathrm{mol})$ of Path $\mathbf{P}_{\mathbf{2}}(\mathbf{3})$ and $\mathbf{T S}^{\prime} / \mathbf{8}^{\prime}(-70.4 \mathrm{kcal} / \mathrm{mol})$ of both Path $\mathbf{P}_{\mathbf{2}}$ (4) and Path $\mathbf{P}_{\mathbf{2}}$ (5), Path $\mathbf{P}_{\mathbf{2}}$ (2) may be the most feasible among the five pathways. In addition, Path $\mathbf{P}_{\mathbf{2}}(\mathbf{2})$ is relatively very simple. In the present and later discussions, the most feasible pathways are underlined.

For product \mathbf{P}_{3} HON +NO , there are four energetically accessible pathways:

Path $P_{3}(1): R \rightarrow 1 \rightarrow 2 \rightarrow 2^{\prime} \rightarrow 21 \rightarrow P_{3}$
Path $P_{3}(2): R \rightarrow 1 \rightarrow 2 \rightarrow 2^{\prime} \rightarrow 3 \rightarrow 7 \rightarrow P_{3}$
Path $P_{3}(3): R \rightarrow 1 \rightarrow 2 \rightarrow 2^{\prime} \rightarrow 3 \rightarrow 12 \rightarrow 7 \rightarrow P_{3}$
Path $P_{3}(4): R \rightarrow 1 \rightarrow 2 \rightarrow 2^{\prime} \rightarrow 8^{\prime} \rightarrow 4 \rightarrow 7 \rightarrow P_{3}$
The relative energy of the rate determining transition state TS2 ${ }^{\prime} /$ $21(-108.6 \mathrm{kcal} / \mathrm{mol})$ of Path $\mathbf{P}_{\mathbf{3}}(\mathbf{1})$ is much lower than TS3/7 $(-93.0 \mathrm{kcal} / \mathrm{mol})$ of Path $\mathbf{P}_{3}(\mathbf{2})$, TS2 ${ }^{\prime} / 3(-96.5 \mathrm{kcal} / \mathrm{mol})$ of Path $\mathbf{P}_{\mathbf{3}}(\mathbf{3})$ and $\mathbf{T S}^{\prime} / \mathbf{8}^{\prime}(-70.4 \mathrm{kcal} / \mathrm{mol})$ of $\mathbf{P a t h} \mathbf{P}_{\mathbf{3}}(\mathbf{4})$. Then, Path \mathbf{P}_{3} (1) may be the most feasible pathway.

There are three pathways to form product $\mathbf{P}_{4}{ }^{1} \mathrm{NH}+\mathrm{CO}_{2}$ and product $\mathbf{P}_{5} \mathrm{HNCO}+{ }^{1} \mathrm{O}$ each. They include:

Path $P_{4}(1): R \rightarrow 1 \rightarrow 2 \rightarrow 2^{\prime} \rightarrow 3 \rightarrow 12 \rightarrow P_{4}$
Path P_{4} (2): $R \rightarrow 1 \rightarrow 2 \rightarrow 2^{\prime} \rightarrow 8^{\prime} \rightarrow 4 \rightarrow 7 \rightarrow 12 \rightarrow P_{4}$
Path P_{4} (3): $\mathrm{R} \rightarrow 1 \rightarrow 2 \rightarrow 2^{\prime} \rightarrow 8^{\prime} \rightarrow$

$$
4 \rightarrow 7 \rightarrow 3 \rightarrow 12 \rightarrow P_{4}
$$

and
Path $P_{5}(1): R \rightarrow 1 \rightarrow 2 \rightarrow 2^{\prime} \rightarrow 3 \rightarrow P_{5}$
Path $P_{5}(2): R \rightarrow 1 \rightarrow 2 \rightarrow 2^{\prime} \rightarrow 8^{\prime} \rightarrow$

$$
4 \rightarrow 7 \rightarrow 12 \rightarrow 3 \rightarrow P_{5}
$$

Path $P_{5}(3): R \rightarrow 1 \rightarrow 2 \rightarrow 2^{\prime} \rightarrow 8^{\prime} \rightarrow 4 \rightarrow 7 \rightarrow 3 \rightarrow P_{5}$
Certainly, Path $\mathbf{P}_{\mathbf{4}}(\mathbf{1})$ and $\mathbf{P a t h} \mathbf{P}_{\mathbf{5}}(\mathbf{1})$ are the respective most feasible pathways to form \mathbf{P}_{4} and \mathbf{P}_{5}.

For formation of the products $\mathbf{P}_{6} \mathrm{HCNO}+{ }^{1} \mathrm{O}$ and \mathbf{P}_{7} $\mathrm{HCN}+{ }^{1} \mathrm{O}_{2}$, the shared intermediate prior to dissociation is the chainlike isomer HCNOO 11. It can be reached via four pathways to form both $\mathbf{P}_{\mathbf{6}}$ and \mathbf{P}_{7} :

Path $\mathrm{P}_{6}(\mathbf{1}): \mathrm{R} \rightarrow 1 \rightarrow 2 \rightarrow 15 \rightarrow 11 \rightarrow \mathrm{P}_{6}$
Path $P_{6}(2): R \rightarrow 1 \rightarrow 2 \rightarrow 2^{\prime} \rightarrow 3 \rightarrow 16 \rightarrow 15 \rightarrow 11 \rightarrow P_{6}$
Path $\mathrm{P}_{6}(3): \mathrm{R} \rightarrow 1 \rightarrow 2 \rightarrow 2^{\prime} \rightarrow 8^{\prime} \rightarrow 4 \rightarrow 7 \rightarrow 3 \rightarrow$

$$
16 \rightarrow 15 \rightarrow 11 \rightarrow P_{6}
$$

Path $P_{6}(4): R \rightarrow 1 \rightarrow 2 \rightarrow 2^{\prime} \rightarrow 8^{\prime} \rightarrow 4 \rightarrow 7 \rightarrow 12 \rightarrow 3 \rightarrow$

$$
16 \rightarrow 15 \rightarrow 11 \rightarrow P_{6}
$$

and
Path $P_{7}(1): R \rightarrow 1 \rightarrow 2 \rightarrow 15 \rightarrow 11 \rightarrow P_{7}$
Path $P_{7}(2): R \rightarrow 1 \rightarrow 2 \rightarrow 2^{\prime} \rightarrow 3 \rightarrow 16 \rightarrow 15 \rightarrow 11 \rightarrow P_{7}$
Path $P_{7}(3): R \rightarrow 1 \rightarrow 2 \rightarrow 2^{\prime} \rightarrow 8^{\prime} \rightarrow 4 \rightarrow 7 \rightarrow 3 \rightarrow$

$$
16 \rightarrow 15 \rightarrow 11 \rightarrow P_{7}
$$

Path $P_{7}(4): R \rightarrow 1 \rightarrow 2 \rightarrow 2^{\prime} \rightarrow 8^{\prime} \rightarrow 4 \rightarrow 7 \rightarrow$

$$
12 \rightarrow 3 \rightarrow 16 \rightarrow 15 \rightarrow 11 \rightarrow P_{7}
$$

Of course, the simple Path $\mathbf{P}_{\mathbf{6}}(\mathbf{1})$ and $\mathbf{P a t h} \mathbf{P}_{7}(\mathbf{1})$ are the most feasible pathways for \mathbf{P}_{6} and \mathbf{P}_{7}, respectively.

Both the chainlike isomers HONCO 7 and HOOCN 9 are the last-step intermediates prior to final dissociation to product $\mathbf{P}_{8} \mathrm{NCO}+\mathrm{OH}$. Then principally the following 11 pathways, i.e.,

Path $P_{8}(1): R \rightarrow 1 \rightarrow 2 \rightarrow 2^{\prime} \rightarrow 3 \rightarrow 7 \rightarrow P_{8}$

Path $P_{8}(2): R \rightarrow 1 \rightarrow 2 \rightarrow 2^{\prime} \rightarrow 3 \rightarrow 12 \rightarrow 7 \rightarrow P 8$

Path P_{8} (3): $R \rightarrow 1 \rightarrow 2 \rightarrow 2^{\prime} \rightarrow 8^{\prime} \rightarrow 4 \rightarrow 7 \rightarrow P_{8}$

Path P_{8} (4): $R \rightarrow 1 \rightarrow 2 \rightarrow 15 \rightarrow 10 \rightarrow 9 \rightarrow P_{8}$

Path $P_{8}(5): R \rightarrow 1 \rightarrow 2 \rightarrow 2^{\prime} \rightarrow 3 \rightarrow 16 \rightarrow$

$$
15 \rightarrow 10 \rightarrow 9 \rightarrow P_{8}
$$

Path $\mathrm{P}_{8}(6): \mathrm{R} \rightarrow 1 \rightarrow 2 \rightarrow 2^{\prime} \rightarrow 8^{\prime} \rightarrow 4 \rightarrow 7 \rightarrow 3 \rightarrow$

$$
16 \rightarrow 15 \rightarrow 10 \rightarrow 9 \rightarrow P_{8}
$$

Path P_{8} (7): $R \rightarrow 1 \rightarrow 2 \rightarrow 2^{\prime} \rightarrow 8^{\prime} \rightarrow 4 \rightarrow 7 \rightarrow 12 \rightarrow 3 \rightarrow$

$$
16 \rightarrow 15 \rightarrow 10 \rightarrow 9 \rightarrow P_{8}
$$

Path $P_{8}(8): R \rightarrow 1 \rightarrow 2 \rightarrow 15 \rightarrow 10 \rightarrow 5 \rightarrow 9 \rightarrow P_{8}$

Path $P_{8}(9): R \rightarrow 1 \rightarrow 2 \rightarrow 2^{\prime} \rightarrow 3 \rightarrow 16 \rightarrow$

$$
15 \rightarrow 10 \rightarrow 5 \rightarrow 9 \rightarrow P_{8}
$$

Path $P_{8}(10): R \rightarrow 1 \rightarrow 2 \rightarrow 2^{\prime} \rightarrow 8^{\prime} \rightarrow 4 \rightarrow 7 \rightarrow 3 \rightarrow$

$$
16 \rightarrow 15 \rightarrow 10 \rightarrow 5 \rightarrow 9 \rightarrow P_{8}
$$

Path $P_{8}(11): R \rightarrow 1 \rightarrow 2 \rightarrow 2^{\prime} \rightarrow 8^{\prime} \rightarrow 4 \rightarrow 7 \rightarrow 12 \rightarrow$

$$
3 \rightarrow 16 \rightarrow 15 \rightarrow 10 \rightarrow 5 \rightarrow 9 \rightarrow P_{8}
$$

can lead to $\mathbf{P}_{\mathbf{8}}$. Surely, the energy of the rate determining transition state TS10/15 ($-10.0 \mathrm{kcal} / \mathrm{mol}$) is rather high. Thus, the eight pathways Path $\mathbf{P}_{\mathbf{8}}(\mathbf{4}-\mathbf{1 1})$ involving isomers $\mathbf{1 0}$ and $\mathbf{1 5}$ may contribute much less to the formation of $\mathbf{P}_{\mathbf{8}}$. The rate determining transition states of Path $\mathbf{P}_{\mathbf{8}}$ (1), Path $\mathbf{P}_{\mathbf{8}}$ (2) and Path $\mathbf{P}_{\mathbf{8}}(\mathbf{3})$ are TS3/7, TS2 ${ }^{\prime} / \mathbf{3}$, and $\mathbf{T S}^{\prime} / \mathbf{8}^{\prime}$, respectively. Since TS3/7 ($-93.0 \mathrm{kcal} / \mathrm{mol}$) and TS2 ${ }^{\prime} / 3$ ($-96.5 \mathrm{kcal} / \mathrm{mol}$) lie energetically much lower than TS2 ${ }^{\prime} / \mathbf{8}^{\prime}(-70.4 \mathrm{kcal} / \mathrm{mol})$, both Path $\mathbf{P}_{\mathbf{8}}$ (1) and Path $\mathbf{P}_{\mathbf{8}}$ (2) may overwhelm over Path $\mathbf{P}_{\mathbf{8}}$ (3) to form \mathbf{P}_{8}. In more detail, starting from isomer 2, conversion to isomer $\mathbf{1 2}$ and then to isomer 7 may be more competitive than direct conversion to isomer 7 since TS3/7 ($-93.0 \mathrm{kcal} /$ $\mathrm{mol})$ lies higher than TS3/12 $(-114.0 \mathrm{kcal} / \mathrm{mol})$ and TS7/12 $(-107.3 \mathrm{kcal} / \mathrm{mol})$. As a result, Path $\mathbf{P}_{\mathbf{8}}(\mathbf{2})$ is the most probable pathway to form $\mathbf{P}_{\mathbf{8}}$.

Similarly, considering the structural features, the direct dissociation of both the chainlike isomers HOCNO $\mathbf{8}^{\prime}$ and HOONC 10 may produce product $\mathbf{P}_{9} \mathrm{CNO}+\mathrm{OH}$ Then we can
write 10 energetically accessible pathways as

Path $P_{9}(1): R \rightarrow 1 \rightarrow 2 \rightarrow 2^{\prime} \rightarrow 8^{\prime} \rightarrow P_{9}$
Path $P_{9}(2): R \rightarrow 1 \rightarrow 2 \rightarrow 2^{\prime} \rightarrow 3 \rightarrow 7 \rightarrow 4 \rightarrow 8^{\prime} \rightarrow P_{9}$
Path $P_{9}(3): R \rightarrow 1 \rightarrow 2 \rightarrow 2^{\prime} \rightarrow 3 \rightarrow$

$$
12 \rightarrow 7 \rightarrow 4 \rightarrow 8^{\prime} \rightarrow P_{9}
$$

Path P_{9} (4): $R \rightarrow 1 \rightarrow 2 \rightarrow 15 \rightarrow 16 \rightarrow 3 \rightarrow 2^{\prime} \rightarrow 8^{\prime} \rightarrow P_{9}$
Path $\mathrm{P}_{9}(5): R \rightarrow 1 \rightarrow 2 \rightarrow 15 \rightarrow 16 \rightarrow$

$$
3 \rightarrow 7 \rightarrow 4 \rightarrow 8^{\prime} \rightarrow P_{9}
$$

Path $P_{9}(6): R \rightarrow 1 \rightarrow 2 \rightarrow 15 \rightarrow 16 \rightarrow 3 \rightarrow$

$$
12 \rightarrow 7 \rightarrow 4 \rightarrow 8^{\prime} \rightarrow P_{9}
$$

Path P_{9} (7): $R \rightarrow 1 \rightarrow 2 \rightarrow 15 \rightarrow 10 \rightarrow P_{9}$
Path $P_{9}(8): R \rightarrow 1 \rightarrow 2 \rightarrow 2^{\prime} \rightarrow 3 \rightarrow 16 \rightarrow 15 \rightarrow 10 \rightarrow P_{9}$
Path $\mathrm{P}_{9}(9): \mathrm{R} \rightarrow 1 \rightarrow 2 \rightarrow 2^{\prime} \rightarrow 8^{\prime} \rightarrow 4 \rightarrow 7 \rightarrow$

$$
3 \rightarrow 16 \rightarrow 15 \rightarrow 10 \rightarrow P_{9}
$$

Path $\mathrm{P}_{9}(10): \mathrm{R} \rightarrow 1 \rightarrow 2 \rightarrow 2^{\prime} \rightarrow 8^{\prime} \rightarrow 4 \rightarrow 7 \rightarrow$

$$
12 \rightarrow 3 \rightarrow 16 \rightarrow 15 \rightarrow 10 \rightarrow P_{9}
$$

From the relative energies of the transition states involved in these pathways, we can easily find that the rate determining TS4/8' ${ }^{\prime}(-88.5 \mathrm{kcal} / \mathrm{mol})$ of Path $\mathbf{P}_{\mathbf{9}}(\mathbf{2}, \mathbf{3})$ lies much lower than TS2'/8' ($-70.4 \mathrm{kcal} / \mathrm{mol}$) of Path $\mathbf{P}_{\mathbf{9}}(\mathbf{1})$, TS15/16 ($-27.4 \mathrm{kcal} /$ $\mathrm{mol})$ of Path $\mathbf{P}_{\mathbf{9}}(\mathbf{4 - 6})$ and TS10/15 $(-12.6 \mathrm{kcal} / \mathrm{mol})$ of Path \mathbf{P}_{9} (7-10). Moreover, the second rate determining transition states of Path $\mathbf{P}_{\mathbf{9}}(\mathbf{2})$ and Path $\mathbf{P}_{\mathbf{9}}(\mathbf{3})$ are TS3/7 ($-93.0 \mathrm{kcal} /$ $\mathrm{mol})$ and TS7/12 $(-107.3 \mathrm{kcal} / \mathrm{mol})$, respectively. While TS7/ $\mathbf{1 2}$ is $14.3 \mathrm{kcal} / \mathrm{mol}$ lower than TS3/7, Path $\mathbf{P}_{\mathbf{9}}$ (3) is expected to play a predominant role over Path $\mathbf{P}_{\mathbf{9}}$ (2) for formation of \mathbf{P}_{9}.

Finally, we can obtain eight pathways for product $\mathbf{P}_{10} \mathrm{CN}+$ HO_{2} and four pathways for product $\mathbf{P}_{11} \mathrm{HNC}+{ }^{1} \mathrm{O}_{2}$ as follows:

Path $P_{10}(1): R \rightarrow 1 \rightarrow 2 \rightarrow 15 \rightarrow 10 \rightarrow 5 \rightarrow P_{10}$
Path P_{10} (2): $\mathrm{R} \rightarrow 1 \rightarrow 2 \rightarrow 2^{\prime} \rightarrow 3 \rightarrow 16 \rightarrow$

$$
15 \rightarrow 10 \rightarrow 5 \rightarrow P_{10}
$$

Path $P_{10}(3): R \rightarrow 1 \rightarrow 2 \rightarrow 2^{\prime} \rightarrow 8^{\prime} \rightarrow 4 \rightarrow 7 \rightarrow 3 \rightarrow$

$$
16 \rightarrow 15 \rightarrow 10 \rightarrow 5 \rightarrow P_{10}
$$

Path P_{10} (4): $R \rightarrow 1 \rightarrow 2 \rightarrow 2^{\prime} \rightarrow 8^{\prime} \rightarrow 4 \rightarrow 7 \rightarrow$

$$
12 \rightarrow 3 \rightarrow 16 \rightarrow 15 \rightarrow 10 \rightarrow 5 \rightarrow P_{10}
$$

Path $P_{10}(5): R \rightarrow 1 \rightarrow 2 \rightarrow 15 \rightarrow 10 \rightarrow 9 \rightarrow 5 \rightarrow P_{10}$
Path $\mathrm{P}_{10}(6): \mathrm{R} \rightarrow 1 \rightarrow 2 \rightarrow 2^{\prime} \rightarrow 3 \rightarrow 16 \rightarrow$

$$
15 \rightarrow 10 \rightarrow 9 \rightarrow 5 \rightarrow P_{10}
$$

Path P_{10} (7): $\mathrm{R} \rightarrow 1 \rightarrow 2 \rightarrow 2^{\prime} \rightarrow 8^{\prime} \rightarrow 4 \rightarrow 7 \rightarrow 3 \rightarrow$

$$
16 \rightarrow 15 \rightarrow 10 \rightarrow 9 \rightarrow 5 \rightarrow P_{10}
$$

Path $\mathrm{P}_{10}(8): \mathrm{R} \rightarrow 1 \rightarrow 2 \rightarrow 2^{\prime} \rightarrow 8^{\prime} \rightarrow 4 \rightarrow 7 \rightarrow 12 \rightarrow 3 \rightarrow$ $16 \rightarrow 15 \rightarrow 10 \rightarrow 9 \rightarrow 5 \rightarrow P_{10}$
and
Path $P_{11}(1): R \rightarrow 1 \rightarrow 2 \rightarrow 15 \rightarrow 16 \rightarrow 13 \rightarrow P_{11}$
Path $\mathrm{P}_{11}(2): \mathrm{R} \rightarrow 1 \rightarrow 2 \rightarrow 2^{\prime} \rightarrow 3 \rightarrow 16 \rightarrow 13 \rightarrow \mathrm{P}_{11}$

Path $P_{11}(3): R \rightarrow 1 \rightarrow 2 \rightarrow 2^{\prime} \rightarrow 8^{\prime} \rightarrow 4 \rightarrow$

$$
7 \rightarrow 3 \rightarrow 16 \rightarrow 13 \rightarrow P_{11}
$$

Path P_{11} (4): $R \rightarrow 1 \rightarrow 2 \rightarrow 2^{\prime} \rightarrow 8^{\prime} \rightarrow 4 \rightarrow 7 \rightarrow$

$$
12 \rightarrow 3 \rightarrow 16 \rightarrow 13 \rightarrow P_{11}
$$

For $\mathbf{P}_{\mathbf{1 0}}$, the indirect conversion from isomer $\mathbf{1 0}$ to $\mathbf{9}$ and then 9 to 5 is much easier than direct conversion from 10 to 5 . Then Path $\mathrm{P}_{10}(5-8)$ are more competitive than Path $\mathrm{P}_{10}(\mathbf{1 - 4)}$. Also, TS3/16 ($-56.5 \mathrm{kcal} / \mathrm{mol}$) is considerably higher than TS2/15 $(-76.0 \mathrm{kcal} / \mathrm{mol})$. Then Path $\mathbf{P}_{\mathbf{1 0}}(\mathbf{5})$ is more competitive than Path $\mathbf{P}_{10}(6-\mathbf{8})$. For \mathbf{P}_{11}, since the rate determining TS13/16 $(-40.2 \mathrm{kcal} / \mathrm{mol})$ of Path $\mathbf{P}_{11}(\mathbf{2}-\mathbf{4})$ is much lower than TS15/ $\mathbf{1 6}(-27.4 \mathrm{kcal} / \mathrm{mol})$ of Path $\mathbf{P}_{\mathbf{1 1}}(\mathbf{1})$, Path $\mathbf{P}_{\mathbf{1 1}}(\mathbf{1})$ is surely the most unimportant pathway. Moreover, the direct conversion of isomer $\mathbf{2}^{\prime}$ to isomer $\mathbf{3}$ is much more competitive than indirect pathways via isomer $\mathbf{8}^{\prime}$ since TS2 $\mathbf{2}^{\prime} / \mathbf{3}(-96.5 \mathrm{kcal} / \mathrm{mol})$ lies much lower than TS2 ${ }^{\prime} / \mathbf{8}^{\prime}(-70.4 \mathrm{kcal} / \mathrm{mol})$. Therefore, Path $\mathbf{P}_{\mathbf{1 0}}(\mathbf{5})$ and Path $\mathbf{P}_{1 \mathbf{1}}$ (2) are respective most feasible pathways for $\mathbf{P}_{\mathbf{1 0}}$ and \mathbf{P}_{11}.

It is worthy of note that two inter atom-abstraction transition states between products, namely, $\mathbf{T S P}_{\mathbf{1}} / \mathbf{P}_{\mathbf{2}}(\mathrm{H}-\mathrm{abstraction}$ from HNO to CO and from HCO to NO) and $\mathbf{T S} \mathbf{P}_{2} / \mathbf{P}_{4}$ (O-abstraction from HNO to CO and from CO_{2} to NH), are also located. Once either of the two products is formed, the separate species need to make reorientation and be well kept together. However, in normal cases, the chance for such secondary intermolecular processes to take place is very rare. Then both intermolecular processes may be unimportant despite that $\mathbf{T S P}_{\mathbf{1}} / \mathbf{P}_{\mathbf{2}}(-102.3$ $\mathrm{kcal} / \mathrm{mol})$ and $\mathbf{T S P}_{2} / \mathbf{P}_{4}(-99.6 \mathrm{kcal} / \mathrm{mol})$ are close in energy to $\mathbf{T S} \mathbf{P}_{1} / \mathbf{P}_{12}(-106.3 \mathrm{kcal} / \mathrm{mol})$ and $\mathbf{P}_{12}(-110.9 \mathrm{kcal} / \mathrm{mol})$, respectively. Note that $\mathbf{T S} \mathbf{P}_{1} / \mathbf{P}_{12}$ is associated with a intramolecular dissociation within HCO. Therefore, $\mathbf{T S P}_{1} / \mathbf{P}_{2}$ and $\mathbf{T S P}_{2} /$ \mathbf{P}_{4} are not included in the discussion of the most feasible pathways of the products $\mathbf{P}_{1}, \mathbf{P}_{2}$ and \mathbf{P}_{4}.

Moreover, no reaction pathways involving the branched chainlike isomer $\mathrm{HON}(\mathrm{C}) \mathrm{O} 6(-48.5 \mathrm{kcal} / \mathrm{mol})$, four-membered ring isomers $\mathrm{cOOC}(\mathrm{N}) \mathrm{H} 14(-24.2 \mathrm{kcal} / \mathrm{mol})$, cONOCH 17 $(-91.0 \mathrm{kcal} / \mathrm{mol})$, cOCONH $18(-83.0 \mathrm{kcal} / \mathrm{mol})$ and cNOCOH $19(-32.8 \mathrm{kcal} / \mathrm{mol})$, and weakly bound complexes $\mathrm{HCO} \cdots \mathrm{ON}$ $20(-109.6 \mathrm{kcal} / \mathrm{mol})$ and HOC \cdots ON $22(-59.5 \mathrm{kcal} / \mathrm{mol})$ could be found though we obtain some transition states of these possible pathways, i.e., TS6/P $\mathbf{P}_{3}(-44.0 \mathrm{kcal} / \mathrm{mol}), ~ T S 14 / \mathbf{P}_{7}$ $(-23.9 \mathrm{kcal} / \mathrm{mol}), \mathbf{T S 1 7 / 1 9}(-20.1 \mathrm{kcal} / \mathrm{mol}), \mathbf{T S 1 7 / P} \mathbf{P}_{1}(-50.0$ $\mathrm{kcal} / \mathrm{mol})$, and TS18/P 4 ($-72.4 \mathrm{kcal} / \mathrm{mol}$). Conversion from reactant \mathbf{R} to the isomers $\mathbf{6}, \mathbf{1 4}, \mathbf{1 7}, \mathbf{1 8}$, and $\mathbf{1 9}$ is expected to take complex processes with high barriers. Then, the seven isomers and the five transition states are not given in Figure 4,b, either.

It should be pointed out the barriers for $\mathbf{3} \rightarrow \mathbf{P}_{\mathbf{2}}(-5.3 \mathrm{kcal} /$ $\mathrm{mol}) \mathbf{1 1} \rightarrow \mathbf{1 5}(-3.0 \mathrm{kcal} / \mathrm{mol})$, and $\mathbf{1 1} \rightarrow \mathbf{P}_{\mathbf{7}}(-5.9 \mathrm{kcal} / \mathrm{mol})$ show abnormally negative values at the $\operatorname{CCSD}(\mathrm{T}) / 6-311 \mathrm{G}(\mathrm{d}, \mathrm{p}) / /$ B3LYP/6-311G(d,p)+ZPVE level, though they are positive at the B3LYP/6-311G(d,p) level. This may at least indicate the kinetic instability of the isomers $\mathbf{3}$ and $\mathbf{1 1}$.
3.4. Mechanism. In section 3.3, we have obtained the most feasible reaction pathways for the 11 primary products. Here,
for discussions easier, they are listed again as follows:
Path $\mathrm{P}_{1}(1): R \rightarrow 1 \rightarrow 2 \rightarrow \mathrm{P}_{1}$ and

$$
\text { Path } P_{1}(2): R \rightarrow 1 \rightarrow 2 \rightarrow 2^{\prime} \rightarrow P_{1}
$$

Path $P_{2}(2): R \rightarrow 1 \rightarrow 2 \rightarrow 2^{\prime} \rightarrow P_{2}$
Path $P_{3}(1): R \rightarrow 1 \rightarrow 2 \rightarrow 2^{\prime} \rightarrow 21 \rightarrow P_{3}$
Path $P_{4}(1): R \rightarrow 1 \rightarrow 2 \rightarrow 2^{\prime} \rightarrow 3 \rightarrow 12 \rightarrow P_{4}$
Path $P_{5}(1): R \rightarrow 1 \rightarrow 2 \rightarrow 2^{\prime} \rightarrow 3 \rightarrow P_{5}$
Path $P_{6}(1): R \rightarrow 1 \rightarrow 2 \rightarrow 15 \rightarrow 11 \rightarrow P_{6}$
Path $P_{7}(\mathbf{1}): \mathbf{R} \rightarrow \mathbf{1} \rightarrow 2 \rightarrow 15 \rightarrow 11 \rightarrow \mathbf{P}_{7}$
Path $\mathrm{P}_{8}(2): \mathbf{R} \rightarrow 1 \rightarrow 2 \rightarrow 2^{\prime} \rightarrow 3 \rightarrow 12 \rightarrow 7 \rightarrow \mathrm{P}_{8}$
Path $P_{9}(3): R \rightarrow 1 \rightarrow 2 \rightarrow 2^{\prime} \rightarrow 3 \rightarrow$

$$
12 \rightarrow 7 \rightarrow 4 \rightarrow 8^{\prime} \rightarrow P_{9}
$$

Path $P_{10}(5): R \rightarrow 1 \rightarrow 2 \rightarrow 15 \rightarrow 10 \rightarrow 9 \rightarrow 5 \rightarrow P_{10}$
Path $\mathrm{P}_{11}(2): \mathrm{R} \rightarrow 1 \rightarrow 2 \rightarrow \mathbf{2}^{\prime} \rightarrow 3 \rightarrow 16 \rightarrow 13 \rightarrow \mathrm{P}_{11}$
By means of these most feasible pathways, let us discuss the possible mechanism of the title reaction.

The products $\mathbf{P}_{5} \mathrm{HNCO}+{ }^{1} \mathrm{O}(-67.7 \mathrm{kcal} / \mathrm{mol}), \mathbf{P}_{6} \mathrm{HCNO}+{ }^{1} \mathrm{O}$ $(2.2 \mathrm{kcal} / \mathrm{mol}), \mathbf{P}_{\mathbf{9}} \mathrm{CNO}+\mathrm{OH}(-47.4 \mathrm{kcal} / \mathrm{mol}), \mathbf{P}_{\mathbf{1 0}} \mathrm{CN}+$ $\mathrm{HO}_{2}(-40.3 \mathrm{kcal} / \mathrm{mol})$, and $\mathbf{P}_{11} \mathrm{HNC}+{ }^{1} \mathrm{O}_{2}(-73.6 \mathrm{kcal} / \mathrm{mol})$ lie rather high. This thermodynamically prevents their possible experimental existence with detectable yields relative to the lowlying products $\mathbf{P}_{\mathbf{1}} \mathrm{HCO}+\mathrm{NO}(-119.7 \mathrm{kcal} / \mathrm{mol}), \mathbf{P}_{\mathbf{2}} \mathrm{HNO}+$ $\mathrm{CO}(-152.5 \mathrm{kcal} / \mathrm{mol}), \mathbf{P}_{3} \mathrm{HON}+\mathrm{CO}(-109.3 \mathrm{kcal} / \mathrm{mol}), \mathbf{P}_{12}$ $\mathrm{H}+\mathrm{CO}+\mathrm{NO}(-110.9 \mathrm{kcal} / \mathrm{mol}), \mathbf{P}_{4}{ }^{1} \mathrm{NH}+\mathrm{CO}_{2}(-114.1$ $\mathrm{kcal} / \mathrm{mol})$, and $\mathbf{P}_{8} \mathrm{NCO}+\mathrm{OH}(-109.8 \mathrm{kcal} / \mathrm{mol})$. Additionally, though $\mathbf{P}_{7} \mathrm{HCN}+{ }^{1} \mathrm{O}_{2}(-88.5 \mathrm{kcal} / \mathrm{mol})$ is low-lying, the highenergy TS11/15 ($-24.2 \mathrm{kcal} / \mathrm{mol}$) along its most feasible pathway also makes it unlikely to be observable in experiments.

Let us compare the pathways of the remaining five primary products $\mathbf{P}_{\mathbf{1}}, \mathbf{P}_{\mathbf{2}}, \mathbf{P}_{3}, \mathbf{P}_{\mathbf{4}}$, and $\mathbf{P}_{\mathbf{8}}$ as well as one secondary product \mathbf{P}_{12}, each of which lies more than $100 \mathrm{kcal} / \mathrm{mol}$ below reactant R. First, TS3/12 $(-114.0 \mathrm{kcal} / \mathrm{mol})$ is higher than $\mathbf{T S} 3 / \mathbf{P}_{\mathbf{2}}$, and TS7/12 $(-107.3 \mathrm{kcal} / \mathrm{mol})$ is higher than $\mathbf{P}_{4}(-114.1 \mathrm{kcal} / \mathrm{mol})$. Then formation of $\mathbf{P}_{\mathbf{8}}$ via $\mathbf{P a t h} \mathbf{P}_{\mathbf{8}}(\mathbf{1})$ may be less likely than \mathbf{P}_{4} and that of \mathbf{P}_{4} via Path \mathbf{P}_{4} (1) less likely than that of $\mathbf{P}_{\mathbf{2}}$. Second, we expect that formation of $\mathbf{P}_{\mathbf{1}} \mathrm{HCO}+\mathrm{NO}$ is much more competitive than that of $\mathbf{P}_{\mathbf{2}} \mathrm{HNO}+\mathrm{CO}$ and $\mathbf{P}_{\mathbf{3}} \mathrm{HON}+$ CO since the relative energy of $\mathbf{P}_{\mathbf{1}}(-119.7 \mathrm{kcal} / \mathrm{mol})$ is significantly lower than that of $\mathbf{T S}^{\prime} / \mathbf{P}_{\mathbf{2}}(-107.3 \mathrm{kcal} / \mathrm{mol})$ of Path $\mathbf{P}_{\mathbf{2}}(\mathbf{2})$ and TS2'/21 ($-108.6 \mathrm{kcal} / \mathrm{mol}$) of Path $\mathbf{P}_{\mathbf{3}}(\mathbf{1}) . \mathbf{P}_{\mathbf{2}}$ and $\mathbf{P}_{\mathbf{3}}$ may have comparable abundance when produced. Because of the rather large heat (more than $140 \mathrm{kcal} / \mathrm{mol}$) released from reactant \mathbf{R} to the isomers $\mathbf{2}$ and $\mathbf{2}^{\prime}$, further direct dissociation of most of HCO in $\mathbf{P}_{\mathbf{1}}, \mathrm{HNO}$ in $\mathbf{P}_{\mathbf{2}}$ and HON in $\mathbf{P}_{\mathbf{3}}$ to form the same secondary product $\mathbf{P}_{12} \mathrm{H}+\mathrm{CO}+\mathrm{NO}$ may be very facile. Then in the final observed products, the almost exclusive product may be $\mathbf{P}_{\mathbf{1 2}} \mathrm{H}+\mathrm{CO}+\mathrm{NO}$, whereas the remaining $\mathbf{P}_{\mathbf{1}} \mathrm{HCO}+\mathrm{NO}$ contains a very small amount and the yields of the products $\mathbf{P}_{\mathbf{2}} \mathrm{HNO}+\mathrm{CO}$ and $\mathbf{P}_{\mathbf{3}} \mathrm{HON}+\mathrm{CO}$ should be even much smaller. The remaining products, however, may have undetectable yields.
3.5. Comparison with Experiments. Now let us apply our calculated mechanism to discuss the deduced branching ratios of the title reaction in a very recent diode laser study by Rim and Hershberger. ${ }^{6}$ They found that $\mathrm{CO}, \mathrm{CO}_{2}$, and NO were detected in significant yield $\left(\mathrm{CO}_{2}\right.$ occupies only a small amount), while DCN (from CDBr_{3}), $\mathrm{N}_{2} \mathrm{O}, \mathrm{HCNO}$ and HNCO in undetectably low yields. Our results that $\mathbf{P}_{4}{ }^{1} \mathrm{NH}+\mathrm{CO}_{2}$ may be negligible compared to $\mathbf{P}_{\mathbf{1 2}} \mathrm{H}+\mathrm{CO}+\mathrm{NO}$ agree well with Rim and Hershberger ${ }^{6}$ that CO_{2} was produced mainly via the secondary reaction $\mathrm{HCO}+\mathrm{NO}_{2} \rightarrow \mathrm{H}+\mathrm{NO}+\mathrm{CO}_{2}$. Also, our calculations show that among the total product distributions, $\mathbf{P}_{12} \mathrm{H}+\mathrm{CO}+\mathrm{NO}$ may be the almost exclusive product and $\mathbf{P}_{\mathbf{1}} \mathrm{HCO}+$ NO may occupy a very small amount with $\mathbf{P}_{\mathbf{2}} \mathrm{HNO}$ +CO and $\mathbf{P}_{\mathbf{3}} \mathrm{HON}+\mathrm{NO}$ even much less. This is in excellent agreement with Rim and Hershberger's experimental fact that considerable CO and NO were detected. On the basis of consideration of product yields and secondary chemistry, Rim and Hershberger found that the major product channel is $\mathrm{H}+$ $\mathrm{CO}+\mathrm{NO}$ or $\mathrm{HNO}+\mathrm{CO}$ (together accounting for $92 \pm 4 \%$), whereas $\mathrm{HCO}+\mathrm{NO}$ is a minor product channel $(8 \pm 4 \%)$. They were not able to distinguish between product $\mathbf{P}_{2} \mathrm{HNO}+$ CO and. $\mathrm{P}_{12} \mathrm{H}+\mathrm{CO}+\mathrm{NO}$ because both produce one CO molecule for every CH radical consumed. However, our calculations show that another product $\mathbf{P}_{3} \mathrm{HON}+\mathrm{CO}$, which was completely ignored by both Wagal ${ }^{5}$ and Rim and Hershberger, ${ }^{6}$ may partly contribute to the final high abundance of $\mathbf{P}_{\mathbf{1 2}} \mathrm{H}+\mathrm{CO}+\mathrm{NO}$ in the same role as $\mathbf{P}_{\mathbf{2}} \mathrm{HNO}+\mathrm{CO}$ does. In fact, Rim and Hershberger found that the experimental NO yields were inconsistent with their predictions. They ascribed the discrepancy to some possible secondary reactions as $\mathrm{Br}+$ $\mathrm{NO}_{2}+\mathrm{M} \rightarrow \mathrm{BrNO}_{2}+\mathrm{M} \rightarrow \mathrm{BrO}+\mathrm{NO}+\mathrm{M}$ and $\mathrm{CHBr}+$ $\mathrm{NO}_{2} \rightarrow \mathrm{CHOBr}+\mathrm{NO}$. We feel that contribution of the reaction $\mathrm{CH}+\mathrm{NO}_{2} \rightarrow \mathrm{HON}+\mathrm{CO} \rightarrow \mathrm{H}+\mathrm{CO}+\mathrm{NO}$ should also be considered. Therefore, Rim and Hershberger's conclusion might be better revised as that the major product channel is $\mathrm{H}+\mathrm{CO}$ $+\mathrm{NO}, \mathrm{HNO}+\mathrm{CO}$ or $\mathrm{HON}+\mathrm{CO}$ (together accounting for 92 $\pm 4 \%$), whereas $\mathrm{HCO}+\mathrm{NO}$ is a minor product channel ($8 \pm$ 4%).

On the basis of the simple transition state theory, we also calculate the relative abundance of the primary products $\mathbf{P}_{\mathbf{1}} \mathrm{HCO}$ $+\mathrm{NO}, \mathbf{P}_{\mathbf{2}} \mathrm{HNO}+\mathrm{CO}$ and $\mathbf{P}_{\mathbf{3}} \mathrm{HON}+\mathrm{NO}$ from the intermediate $\mathrm{OC}(\mathrm{H}) \mathrm{NO} \mathbf{2}^{\prime}$ (for simplicity, the three processes are refereed to as reaction 1,2 and 3 , respectively). The rate constant formula $k=K T / h \mathrm{e}^{\Delta S / R} \mathrm{e}^{-\Delta E / R T}$ is used, where $k, \Delta S$, and ΔE denote the rate constants $\left(k_{1}, k_{2}\right.$, and $\left.k_{3}\right)$, entropy differences $\left(\Delta S_{1}, \Delta S_{2}\right.$, and ΔS_{3}) and barrier heights ($\Delta E_{1}, \Delta E_{2}$, and ΔE_{3}), respectively. On the basis of the calculated values, i.e., $\Delta S_{1}=36.464, \Delta S_{2}$ $=3.003, \Delta S_{3}=2.458, \Delta E_{1}=23.5, \Delta E_{2}=35.9$, and $\Delta E_{3}=$ 34.6 (the units of S and E are cal $\mathrm{mol}^{-1} \mathrm{~K}^{-1}$, $\mathrm{kcal} \mathrm{mol}^{-1}$), we can obtain the ratios of k_{1} / k_{2} and k_{1} / k_{3} as about 10^{15} and 10^{14}, respectively. The ΔS_{1} value is much larger than ΔS_{2} and ΔS_{3} since we find no transition states for the direct dissociation of $\mathrm{OC}(\mathrm{H}) \mathrm{NO} \mathbf{2}^{\prime}$ to $\mathbf{P}_{\mathbf{1}} \mathrm{HCO}+\mathrm{NO}$ along the $\mathrm{C}-\mathrm{N}$ bond, and thus ΔS_{1} is the entropy difference between $\mathbf{2}^{\prime}$ to $\mathbf{P}_{\mathbf{1}}$. Even if we set $\Delta S_{1}, \Delta S_{2}$, and ΔS_{3} as equal, the respective k_{1} / k_{2} and k_{1} / k_{3} ratios are about 10^{8} and 10^{7}. This indicates that in determining the relative abundance of the three primary products $\mathbf{P}_{1}, \mathbf{P}_{2}$, and \mathbf{P}_{3}, the "entropic effects" may be very significant, yet the barrier height is still a predominant factor. Of course, for such a complex chemical system, it is very difficult to predict accurate branching ratios of various products, which needs detailed dynamic calculations. The results presented here are at least indicative of the predominance of $\mathbf{P}_{\mathbf{1}}$ over $\mathbf{P}_{\mathbf{2}}$ and $\mathbf{P}_{\mathbf{3}}$.

It is of interest to turn to why the low-lying triplet products $\mathbf{P}_{4}{ }^{3} \mathrm{NH}+\mathrm{CO}_{2}(-154.1 \mathrm{kcal} / \mathrm{mol}), \mathbf{P}_{7}{ }^{\prime} \mathrm{HCN}+{ }^{3} \mathrm{O}_{2}(-117.7 \mathrm{kcal} /$ $\mathrm{mol})$, and $\mathbf{P}_{5}{ }^{\prime} \mathrm{HNCO}+{ }^{3} \mathrm{O}(-114.8 \mathrm{kcal} / \mathrm{mol})$ were not observed. In the preceding discussions, we focus on the singlet PES of the CHNO_{2} system. Although formation of these triplet species is generally spin-forbidden, it is not impossible that they are formed via intersystem-crossing from the singlet intermediates 12, 11, and 3 involved in Path $\mathbf{P}_{4}(\mathbf{1})$, Path $\mathbf{P}_{7}(\mathbf{1})$, and Path $\mathbf{P}_{5}(\mathbf{1})$, respectively. However, even if such intersystem-crossing processes are barrierless, formation of $\mathbf{P}_{4}^{\prime}, \mathbf{P}_{7}{ }^{\prime}$, and $\mathbf{P}_{5}{ }^{\prime}$ still cannot compete with that of $\mathbf{P}_{1} \mathrm{HCO}+\mathrm{NO}, \mathbf{P}_{2} \mathrm{HNO}+\mathrm{CO}$, $\mathbf{P}_{\mathbf{3}} \mathrm{HON}+\mathrm{CO}$, and $\mathbf{P}_{\mathbf{1 2}} \mathrm{H}+\mathrm{CO}+\mathrm{NO}$, as can be seen from Figure 4a,b. On the other hand, the reactants CH and NO_{2} can obviously be brought together on either a singlet or a triplet PES. Then a question arises: can the low-lying products $\mathbf{P}_{4}{ }^{\prime}$, \mathbf{P}_{7}^{\prime}, and $\mathbf{P}_{5}{ }^{\prime}$ be obtained via the triplet PES? A thorough mechanistic search ${ }^{9}$ for the triplet PES is also performed. We find that the initial triplet adduct HCNO_{2} can also be barrierlessly formed, yet its further rearrangement to the low-lying triplet isomer $\mathrm{OC}(\mathrm{H}) \mathrm{NO}$ needs a very high barrier of about 43 $\mathrm{kcal} / \mathrm{mol}$ at the $\operatorname{CCSD}(\mathrm{T}) / 6-311 \mathrm{G}(\mathrm{d}, \mathrm{p}) / / \mathrm{B} 3 \mathrm{LYP} / 6-311 \mathrm{G}(\mathrm{d}, \mathrm{p})$ level though the conversion transition state still lies $7 \mathrm{kcal} / \mathrm{mol}$ below the reactant. This indicates that the title reaction may most possibly proceed via a singlet PES (as presented in this paper) instead of a triplet PES. Furthermore, the overall conversion barriers from triplet $\mathrm{OC}(\mathrm{H}) \mathrm{NO}$ to the triplet products $\mathbf{P}_{4}^{\prime}, \mathbf{P}_{7}{ }^{\prime}$, and $\mathbf{P}_{5}{ }^{\prime}$ are still very large and their formation cannot at all compete with that of the $\mathrm{HCO}+\mathrm{NO},{ }^{3} \mathrm{HNO}+\mathrm{CO}$, and ${ }^{3} \mathrm{HON}+\mathrm{CO}$, which can take secondary dissociation to $\mathrm{H}+$ $\mathrm{CO}+\mathrm{NO}$.

It should be pointed out Rim and Hershberger ${ }^{6}$ also proposed a mechanism to qualitatively interpret their experimental result. For simplicity, their mechanism for the formation of $\mathbf{P}_{\mathbf{1}} \mathbf{H C O}$ + NO and $\mathbf{P}_{2} \mathrm{HNO}+\mathrm{CO}$ may be written as

Path $\mathbf{P}_{\mathbf{1}}(\mathbf{1}): \mathrm{HCONO} \rightarrow \mathrm{HCO}+\mathrm{NO}$
Path $\mathbf{P}_{\mathbf{1}}$ (2): $\mathrm{HCNO}_{2} \rightarrow \mathrm{HCONO} \rightarrow \mathrm{HCO}+\mathrm{NO}$
Path $\mathbf{P}_{\mathbf{2}}(\mathbf{1}): \mathrm{HCONO} \rightarrow \mathrm{CON}(\mathrm{H}) \mathrm{O} \rightarrow \mathrm{HNO}+\mathrm{CO}$

$$
\text { Path } \begin{aligned}
\mathbf{P}_{2}(2): \mathrm{HCNO}_{2} \rightarrow \mathrm{HCONO} \rightarrow \mathrm{CON}(\mathrm{H}) \mathrm{O} & \rightarrow \\
& \mathrm{HNO}+\mathrm{CO}
\end{aligned}
$$

However, the important isomer HCONO involved in their mechanism cannot be optimized in our calculations despite numerous attempts. It is clear that their proposed mechanism is quite different from our calculated one. Note that, in order to distinguish from ours, the pathways proposed by Rim and Hershberger ${ }^{6}$ are labeled in italics.

4. Conclusions

A detailed singlet potential energy surface of the $\mathrm{CH}+\mathrm{NO}_{2}$ reaction system is built up at the B3LYP and $\operatorname{CCSD}(\mathrm{T})$ (singlepoint) levels The main calculated results can be summarized as follows:
(1) The initial step is the side attack of CH radical on $\mathrm{NO} \pi$ bonding of NO_{2} to form isomer HCNO_{2} 1. The terminal O-attack isomer HCONO, which was previously predicted, cannot be found. Isomer $\mathbf{1}$ then converts to the low-lying cisisomer $\mathrm{OC}(\mathrm{H}) \mathrm{NO} \mathbf{2}$ almost with no barrier and then $\mathbf{2}$ isomerizes to its trans- form $\mathbf{2}^{\prime}$ very easily.
(2) Both isomers $\mathbf{2}$ and $\mathbf{2}^{\prime}$ can directly dissociate to product $\mathbf{P}_{1} \mathrm{HCO}+\mathrm{NO}$ and is the most feasible dissociation channel.

Much less competitively, isomer $\mathbf{2}^{\prime}$ can either dissociate to product $\mathbf{P}_{2} \mathrm{HNO}+\mathrm{NO}$ or isomerize to a weakly bound complex HON \cdots CO 21 that dissociates very easily to product \mathbf{P}_{3} HON + CO. The two products $\mathbf{P}_{\mathbf{2}}$ and $\mathbf{P}_{\mathbf{3}}$ are expected to have comparable abundance. Noticeably, product \mathbf{P}_{3} was completely ignored by Wagal and Rim and Hershberger.
(3) The large reaction heat released from reactant $\mathbf{R} \mathbf{C H}+$ NO_{2} may causemost of the products $\mathbf{P}_{1}, \mathbf{P}_{2}$, and \mathbf{P}_{3} to undergo further dissociation to the secondary product $\mathbf{P}_{12} \mathrm{H}+\mathrm{CO}+$ NO. Thus, reflected in the final product distributions, \mathbf{P}_{12} may be the almost exclusively observable product and the remaining product \mathbf{P}_{1}, which does not take secondary dissociation, may have a very small amount of yield. The abundance of \mathbf{P}_{2} and \mathbf{P}_{12} may be even much less. The other products seem to have undetectable yields.

The calculated results are in excellent agreement with a very recent diode laser study of the $\mathrm{CH}+\mathrm{NO}_{2}$ reaction by Rim and Hershberger. ${ }^{6}$ We hope our calculated mechanism may provide some useful information for understanding the NO chemistry in combustion processes.

Acknowledgment. This work is supported by the National Natural Science Foundation of China (No. 29892168, No. 20073014), Doctor Foundation of Educational Ministry, Foundation for University Key Teacher by the Ministry of Education and Key Term of Science and Technology by the Ministry of Education of China.

References and Notes

(1) (a) Miller, J. A.; Bowman, C. T. Prog. Energy Combust. Sci. 1989, 15, 287. (b) Strobel, D. F. Planet Space Sci. 1982, 30, 839.
(2) (a) Lanier, W. S.; Mulholland, J. A.; Beard, J. T. Proc. Symp. (Int.) Combust. 1988, 21, 1171. (b) Chen, S. L.; McCarthy, J. M.; Clark, W. D.; Heap, M. P.; Seeker, W. R.; Pershing, D. W. Proc. Symp. (Int.) Combust. 1988, 21, 1159.
(3) (a) Bocherel, P.; Herbert, L. B.; Rowe, B. R.; Sims, I. R.; Smith, I. W. M.; Travers, D. J. Phys. Chem. 1996, 100, 3063. (b) Jursic, B. S. J. Phys. Chem. A 1998, 102, 9225. (c) Dean, A. M.; Hanson, R. K.; Bowman, C. T. J. Phys. Chem. 1991, 95, 3180. (d) Lambrecht, R. K.; Hershberger, J. F.. J. Phys. Chem. 1994, 98, 8406. (e) Mebel, A. M.; Luna, A. M.; Lin, C.; Morokuma, K.. J. Chem. Phys. 1996, 105, 6439. (f) Marchard, N.; Jimeno, P.; Rayez, J. C.; Liotard, D. J. Phys. Chem. 1997, 101, 6077. (g) Marchard, N.; Rayez, J. C.; Smith, S. C. J. Phys. Chem. A 1998, 102, 3358. (h) Bergeaut, A.; Calvo, T.; Daugey, N.; Loison, J. C.; Dorthe, G. J. Phys. Chem. A 1998, 102, 8124. (i) Jursic, B. S. J. Phys. Chem. A 1999, 103, 1880.
(4) (a) Anderson, S. M.; Freedman, A.; Kolb, C. E. J. Phys. Chem. 1987, 91, 6272. (b) Becker, K. H.; Engelhardt, B.; Wiesen, P. Chem. Phys. Lett. 1989, 154, 342. (c) Zabarnick, S.; Fleming, J. W.; Lin, M. C. Int. J. Chem. Kinet. 1989, 21, 765. (d) Becker, K. H.; Engelhardt, B.; Geiger, H.; Kurtenbach, R.; Wiesen, P. Chem. Phys. Lett. 1993, 210, 135. (e) Hovda, N.; Hershberger, J. F. Chem. Phys. Lett. 1997, 280, 145.
(5) Wagal, S. S.; Carrington, T.; Filseth, S. V.; Sadowski, C. M. Chem. Phys. 1982, 69, 61.
(6) Rim, K. T.; Hershberger, J. F. J. Phys. Chem. A 1998, 102, 4592.
(7) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Zakrzewski, V. G.; Montgomery, J. A., Jr.; Stratmann, R. E.; Burant, J. C.; Dapprich, S.; Millam, J. M.; Daniels, A. D.; Kudin, K. N.; Strain, M. C.; Farkas, O.; Tomasi, J.; Barone, V.; Cossi, M.; Cammi, R.; Mennucci, B.; Pomelli, C.; Adamo, C.; Clifford, S.; Ochterski, J.; Petersson, G. A.; Ayala, P. Y.; Cui, Q.; Morokuma, K.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Cioslowski, J.; Ortiz, J. V.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Gomperts, R.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Gonzalez, C.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Andres, J. L.; Gonzalez, C.; Head-Gordon, M.; Replogle, E. S.; Pople, J. A. G98W A.7; Gaussian, Inc.: Pittsburgh, PA, 1998.
(8) Chase, M. S. et al. J. Phys. Chem. Ref. Data 1985, 14, Suppl. 1.
(9) Tao, Y. G.; Ding, Y. H.; Li, Z. S.; Huang, X. R.; Sun, C. C. Unpublished results.

